
University of Warsaw
Faculty of Mathematics, Informatics and Mechanics

Mateusz Gienieczko
Student no. 394302

Fast execution of JSONPath queries

Master’s thesis
in COMPUTER SCIENCE

Supervisor:
Dr. Filip Murlak
Faculty of Mathematics, Informatics and Mechanics

Co-supervisor:
Dr. Charles Paperman
Université de Lille & INRIA, France

Warsaw, July 2022

Abstract

JSON is the format of choice for both modern web communication and datasets. Yet, fast
processing of JSON documents is still a major challenge. As shown recently by Langdale
and Lemire [LL19], substantial speedups can be achieved by exploiting the Single Instruc-
tion, Multiple Data (SIMD) capabilities of modern commodity processors. In this work we
move on from parsing to querying JSON data. We focus an XPath-like query language called
JSONPath. Our objective is to evaluate JSONPath queries in the streaming model, without
constructing and maintaining the costly DOM-like tree representation. While streaming pro-
cessing of JSONPath queries in general requires a stack, multiple queries are amenable to
stackless evaluation strategies [BMP21]. In this work we investigate possible speed-ups com-
ing from SIMD processing and branchless evaluation strategies. As our main result we present
rsonpath – an engine for a subset of the JSONPath query language capable of processing over
a gigabyte of JSON data per second, while using merely kilobytes of memory. We also present
a theoretical framework for representing JSONPath queries as small deterministic finite auto-
mata, and posit a circuit complexity conjecture that would provide insight into hardness of
querying semi-structured data.

Keywords

JSON, Semi-structured Data, SIMD, JSONPath, Query Engine, Automata, Circuits

Thesis domain (Socrates-Erasmus subject area codes)

11.3 Informatics, Computer Science

Subject classification

Computing methodologies~Vector / streaming algorithms
Information systems~Query languages

Tytuł pracy w języku polskim

Szybkie wykonywanie zapytań JSONPath

Contents

Introduction . 5

1. JSON and JSONPath . 7
1.1. JSON documents as trees . 7
1.2. JSONPath queries as node or path selectors 9

1.2.1. Node semantics . 9
1.2.2. Path semantics . 9
1.2.3. Semantics choice . 11

1.3. Syntax assumptions . 12
1.3.1. Unicode escapes in labels . 13

2. SIMD model . 15
2.1. Preliminaries . 15
2.2. SIMD extensions . 16

2.2.1. Basic SIMD operations . 17
2.3. Intrinsics . 18
2.4. x86 . 18

2.4.1. Instruction sets . 19
2.4.2. Lanes . 20
2.4.3. CLMUL – carry-less multiplication . 20
2.4.4. Shuffle – nibble lookup tables . 21

2.5. Padding and alignment . 21
2.5.1. Padding . 22
2.5.2. Alignment . 22

2.6. Example vectorial algorithm – discrepancy search 23
2.6.1. Performance . 24

3. Branchless streaming algorithms . 25
3.1. Find byte – memchr . 25

3.1.1. Performance . 26
3.2. Find sequence – memmem . 27

3.2.1. Code synthesis with Rust procedural macros 28
3.2.2. Performance . 28

3.3. Vectorised depth calculation . 31
3.3.1. Eager implementation . 31
3.3.2. Lazy implementation . 31
3.3.3. Performance . 32

3

4. Vectorised classifier . 35
4.1. Structural lookup table . 35

4.1.1. Non-overlapping groups . 36
4.1.2. Few groups . 38
4.1.3. General case . 38

4.2. Handling escapes . 38
4.2.1. Block boundaries . 39

4.3. Recognising quoted sequences . 40
4.3.1. Block boundaries . 41

4.4. Structural iterator . 41
4.4.1. Performance . 41

5. Main query engine . 43
5.1. Stackless processing . 43
5.2. Query automata . 44

5.2.1. Descendant-only automaton . 44
5.2.2. Allowing child selectors . 45

5.3. Small stack model . 46
5.4. Full algorithm . 47

5.4.1. Automaton construction . 47
5.4.2. Execution . 47

5.5. Performance . 48
5.5.1. Analysis . 49
5.5.2. Existing implementations . 50

6. Benchmark methodology . 53
6.1. Datasets . 53
6.2. Machines . 54
6.3. Tooling . 54
6.4. Reproducibility . 54

Summary . 55

A. aligners crate . 57
A.1. Supported alignments . 57
A.2. Asserting alignment on a type level . 58
A.3. Comparison to existing solutions . 58

B. Circuit lower bound for Dyck . 61
B.1. Classes with a bounded number of special gates 61
B.2. Dyck, Prefix-Dyck . 62
B.3. Neutral letters . 62
B.4. Open conjectures . 63

C. JSONPath implementations – node and path semantics 65

Bibliography . 69

4

Introduction

Prevalence of JSON as the communication format of the web forces all modern programming
frameworks to provide some facility for JSON parsing and processing. The problem of effect-
ively parsing JSON data and producing its tree representation (the DOM, Document Object
Model) was tackled by Langdale and Lemire in [LL19] with great success. Their usage of
SIMD instructions found in modern CPUs allowed them to achieve impressive speed-ups over
conventional parsers.

Parsing is one problem, but in today’s world of big data querying massive datasets is
also an important issue. Those datasets are often JSON documents, since that is what is
commonly being produced and transferred between servers. When faced with terabytes of
data to query, constructing a DOM would not only take up massive amounts of RAM, it
would also take most of the time of the query – parsing can amount to up to 90% of time
spent in such an application, while the actual query only touches a small portion of the input
data [Pal+18]. In this paper we circumvent parsing by executing the query in a streaming
setting, without a complex data structure serving as an intermediary step. Indeed, rsonpath
usually requires less than a kilobyte of state to perform the entire query.

As preliminaries, we introduce JSON, JSONPath semantics, and a formal specification
of what results are expected from a query in Chapter 1. We then introduce the concept of
Single Instruction, Multiple Data processing in Chapter 2, available CPU instructions, and
an example of a problem that lends itself well to SIMD parallelisation.

As secondary results, in Chapter 3 we present a number of stream search algorithm optim-
ised with SIMD, along with relevant experiments. While tangential to the main result, these
serve as an introduction on applications of SIMD instructions, while also being of potential
use on their own. In particular, we point that our algorithms could be used to speed up a
popular Rust string searching library, memchr (Section 3.2).

In Chapter 4 we show the SIMD core of the engine, the structural classifier. Based largely
on work of Langdale and Lemire [LL19], we repeat their insights with respect to escape
sequences and quoted blocks, while adding a few more details missing from their paper. A
novel contribution is provided in Section 4.1 – a general algorithm for construction of SIMD
classifier tables.

Our main contribution, the rsonpath application, is presented in Chapter 5. We show
how to model tree path queries as nondeterministic finite automata, and how to effectively
determinise and minimise them, using insights from [BMP21]. We then propose a model of
execution based on such a minimal DFA that uses a compressed stack and minimal branching.
The speed-ups achieved with this technique implemented in the Rust programming language
are presented. Finally, in Chapter 6 we explain the machines and tools used to perform our
experiments.

In the appendix we show a link between effective SIMD parallelisation and circuit complex-
ity, providing a conjecture on circuit lowerbounds that would explain why parsing tree-shaped
data is hard to parallelise (Appendix B). We also present a secondary contribution to the

5

Rust ecosystem dealing with proper memory alignment (Appendix A).

6

Chapter 1

JSON and JSONPath

JSONPath is a query language for JSON documents based on the well-known XPath query
language for XML documents. XPath syntax and semantics is defined by the World Wide Web
Consortium [CD99; RDS17], and is well studied to the point of having the formal semantics
implemented in Coq for verification [GV04]. JSONPath, however, does not enjoy this level of
formality.

JSONPath was first defined by Stefan Gössner in 2007 [Gös07], with a brief differential
comparison with XPath and, crucially, an implementation in JavaScript and PHP. These
implementations are the de facto standard semantics of JSONPath, as it often happens with
programming languages where the answer to “what is the semantics?” is “whatever the main
compiler implementation does”. The semantics were adapted, extended, modified, and broken
by many implementations since. The result of the lack of standardisation is seen in differences
between JSONPath implementations. This fragmentation has been visualised in one project
[Bur+19].

There is ongoing work to standardise in form of a draft specification [GNB22]. Our
implementation conforms mostly to that draft in terms of syntax and semantics, with the
notable exception of handling UTF-8 escapes (see Section 1.3.1). However, the draft leaves an
important aspect of the semantics undefined. In this section we formally define the semantics
of a JSONPath fragment using trees as a document model and tackle the difference between
path semantics and node semantics.

1.1. JSON documents as trees

A JSON document’s format is standardised by RFC8259 [Bra17]. This is an authoritative
document for this entire paper – we define a valid JSON document as one conforming to the
RFC8259 specification, and we only consider valid JSON documents. A JSON document is a
recursive structure, defined as either an object, an array, or a value.

• An object is wrapped in curly braces and contains any number of members, which are
key-document pairs. A label is the key of any such pair. A single object may have
two members with the same label – RFC8259 specifies such a case as implementation
defined, and our implementation allows such a case.

• An array is wrapped in square brackets and contains any number of documents separ-
ated by commas.

• A value is a primitive literal, either a string, a number, or one of the special values
true, false, null.

7

As with XML documents, it is natural to consider JSON documents as trees. Every node
is either an object, an array, or a value. An object has a number of labelled children nodes.
An array has a number of children nodes that are naturally labelled by their index in the
array, starting from "[0]". A value is always a leaf.

{
"person": {

"name": "Gienieczko",
"thesis": {

"name": "SIMDPath",
"advisors": [

{
"person": {

"name": "Murlak"
}

},
{

"person": {
"name": "Paperman"

}
}

]
}

}
}

$

person

name thesis

''Gienieczko'' name advisors

''SIMDPath'' [0] [1]

person

name

''Murlak''

person

name

''Paperman''

Figure 1.1: A JSON document and its tree representation.

Every node in the tree has a label – for objects it is the label of the member they are
located in or the index at which they are located in an array, for values it is the value. The
root gets a unique label that by convention we denote with "$".

A JSON document is therefore described by a tree T = {V, p, label}, where V is a set of
nodes, p is the parent function, and label is a function from nodes to their labels. The parent
function for the root node v is defined as p(v) = ⊥. From now on we only consider non-empty
trees, i.e. V ̸= ∅ – the result of any query on an empty tree is an empty set. Therefore we can
define a function root , returning a root of the tree. We consider paths going in the reverse of
the parent function and identify them with words over V , v1v2 . . . vk, where for each 1 ≤ i < k
we have p(vi+1) = vi. For such words we define first(v1 . . . vk) = v1, last(v1 . . . vk) = vk. The
set of all such paths we denote as PT . Note that they might not necessarily start at the root.

8

1.2. JSONPath queries as node or path selectors

A JSONPath query is a sequence of selectors, describing a path through a JSON tree. In this
paper we consider a subset of the selectors:

• The root selector "$".

• Dot selector ".label", selecting object members by label.

• Descendants selector "..label", selecting members of an object or its descendants by
label.

A valid query contains exactly one root selector at the beginning. The dot and descendants
selectors can be arbitrarily chained.

1.2.1. Node semantics

Under node semantics, a JSONPath query selects a set of nodes of the JSON document.
Formally, a JSON query Q = σ0σ1 . . . σn applied to a tree T = {V, p, label} produces a set
Q(T) ⊆ V defined recursively:

• If n = 0 then σ0 = $ and the result is equal to {root(T)}.

• If n > 0 then we take the result of Q′ = σ0σ1 . . . σn−1, S = Q′(T). Then:

– If σn is ".x" then the result is

{v ∈ V | label(v) = "x", ∃s∈S p(v) = s}.

– If σn is "..x" then the result is the set of descendants of vertices of S with the
correct label, i.e.

{v ∈ V | label(v) = "x", ∃k>1 ∃u1...uk∈PT
u1 ∈ S, uk = v}.

A less formal, but more intuitive description is by defining evaluation step-by-step. The
root selector selects the root node. Evaluation proceeds sequentially, in every step the next
selector in the sequence is applied to the set of nodes from the previous step. A dot selector
selects the children of each node with the correct label if any exist. A descendant selector
selects every descendant of each node with the correct label if any exist. If a node has no
matching children (respectively descendants), it is discarded.

As an example, the query "$..person..name" ran on the JSON from Figure 1.1 would
select all four names, while the query "$..person.name" would restrict only to the three
names nested directly in a "person" member. This is illustrated in Figure 1.2.

1.2.2. Path semantics

Under path semantics, a JSONPath query selects a set of marked paths in the tree. Intuitively,
a marked path is a pair consisting of a path to a node that satisfies the query under node
semantics, with an additional function that maps each selector in the query to a node on
the path. The difference from node semantics comes from this marking – the paths without
marking are the same, but a single path through the tree may appear twice as different results,
because it is mapped to the query in a different way.

9

$

person

name thesis

''Gienieczko'' name advisors

''SIMDPath'' [0] [1]

person

name

''Murlak''

person

name

''Paperman''

$

person

name thesis

''Gienieczko'' name advisors

''SIMDPath'' [0] [1]

person

name

''Murlak''

person

name

''Paperman''

Figure 1.2: Results of running "$..person..name" (left) and "$..person.name" (right) on
the tree from Figure 1.1 in node semantics. Light grey is the root node, selected by the first
selector. Darkest nodes are the final result of the query. The second query first selects all
"person" nodes, marked in darker grey, and only the direct children of these nodes are in the
result set.

Consider a JSON query Q = σ0σ1 . . . σn applied to a tree T = {V, p, label}. A marked path
is a pair consisting of a path v0v1 . . . vk ∈ PT , and an injective function f : [0..n] → [0..k],
satisfying the invariant that f(n) = k, i.e. the last selector always maps to the last node on
the path. The query Q applied to T produces a set Qpath(T) of marked paths, such that:

• If n = 0 then σ0 = $ and the result is {⟨root(T), f⟩}, where f(0) = 0.

• If n > 0 then we take the result of Q′ = σ0σ1 . . . σn−1, Q′(T) and consider every
⟨π, f⟩ ∈ Q′(T).

– If σn is ".x", then the result is⋃
⟨π,f⟩∈Q′(T)

{πv, f [n 7→ |π|+ 1] | v ∈ V, label(v) = "x", p(v) = last(π)}.

– If σn is "..x", then the result is⋃
⟨π,f⟩∈Q′(T)

{πρ, f [n 7→ |πρ|] | ρ ∈ PT , label(last(ρ)) = "x", p(first(ρ)) = last(π)}.

As an example, the query "$..person.name" ran on the JSON from Figure 1.1 would select
the three marked paths from the root to a "name" node nested directly in a "person" node,
while the query "$..person..name" would select a total of six marked paths, because the

10

$

person

name

$

person

thesis

name

$

person

thesis

advisors

[0]

person

name

$

person

thesis

advisors

[0]

person

name

$

person

thesis

advisors

[1]

person

name

$

person

thesis

advisors

[1]

person

name

Figure 1.3: Results of running "$..person.name" on the tree from Figure 1.1 in path se-
mantics. There are six marked paths matching the query, even though they describe only
four nodes in the tree. Coloured nodes are the ones mapped to a selector. The root is al-
ways mapped to the first selector, and the end "name" node is always mapped to the ".name"
selector, but for the two longest paths there are two ways of mapping the "..person" selector.

descendant selector "..person" can be mapped to two different nodes on the two paths from
root to "name", as illustrated in Figure 1.3.

This is the key difference over node semantics. It appears only if there is a descendant
selector "..label" in the query, and the document tree contains at least two nested nodes
labelled "label". It is obvious that if we project the results of a query under path semantics
onto the first element of the pair we will get the same set of paths as we would when evaluating
the query under node semantics.

1.2.3. Semantics choice

We posit that path semantics is undesirable. The difference is important for two reasons.
One, cluttering results with duplicated values is usually not what the user wants. When
running "$..person..name" on the JSON example it is more expected to get a result set of
["Gienieczko", "SIMDPath", "Murlak", "Paperman"] (Figure 1.2) than ["Gienieczko",
"SIMDPath", "Murlak", "Paperman", "Murlak", "Paperman"] (Figure 1.3). Two, under
path semantics the result set might grow very large – it is a simple exercise to construct a
query and a document where the result set under node semantics has O(n) elements, while

11

under path semantics it has O(nk) elements, where k is the length of the query.
The original implementation by Gössner [Gös07] uses path semantics. It is unclear whether

it was a conscious choice or simply a byproduct of the way the author implemented the engine
at the time. Using the json-path-comparison project [Bur+19] we identified that most
currently known implementations use path semantics – out of 44 tested implementations, 34
of them use path semantics, while only 6 use node semantics (4 were errors). See Table C.1 for
details. As an aside, PostgreSQL’s implementation of JSONPath also uses path semantics, as
discovered by C. Paperman [Pap21], which makes it possible to construct simple antagonistic
queries against the database.

The current specification draft [GNB22] does not address this issue directly, but the se-
mantics there are defined using node result sets. An implementation may still present output
in a different way, so path semantics is not strictly disallowed. From this point onward we
consider only node semantics, as not only the more useful and conforming to the specification
draft, but also easier to implement in our streaming model, which inherently demands a linear
pass over the document. This will be crucial for our constructions in Section 5.2.

1.3. Syntax assumptions

As mentioned before, only JSON documents valid w.r.t. RFC8259 [Bra17] are taken into
account. The following assumptions are made and are required for our implementation to
work correctly.

• The document is necessarily a valid UTF-8 encoded text.

• There are six structural characters.

– Objects are delimited with curly brackets, ’{’ and ’}’.

– Arrays are delimited with square brackets, ’[’ and ’]’.

– Labels are separated from values in members by a colon, ’:’.

– Values in arrays and members within objects are separated by commas, ’,’.

• All labels and string values are delimited with double quotes, ’"’.

• Within labels and string values a character may be escaped with the backslash character
’\’.

– Note: since the backslash character can be escaped itself, this is equivalent to
saying that a character is escaped iff it is preceded by an odd number of backslash
characters. Therefore ’\\\n’ is interpreted as “backslash, newline”, while ’\\\\n’ is
“backslash, backslash, letter n”.

• Structural characters may appear only in the predefined positions described above, or
within labels or string values.

• Within labels and string values the double quotes character may only appear escaped.

All of these requirements are guaranteed by RFC8259.

12

The syntax of JSONPath queries is based on the specification draft [GNB22], with two
distinctions.

1. The root selector is optional – since it must always appear exactly once at the beginning
of the query we implicitly insert it if it is omitted.

2. We use the index selector in square brackets from the draft, but only for labels. In the
draft this operator is overloaded – it accepts either a label, as in "['name']", or an index
to an array, as in "[4]", where the former is applicable only to object nodes while the
latter only to array nodes. Since our subset of selectors does not include indexing arrays
we restrict it to labels. This operator allows asking for labels with special characters like
dots and the dollar sign, which would otherwise be parsed as a selector. For example,
selecting any node in the document with the label "$" can be done with "$..['$']",
while "$..$" would be an invalid query.

jsonpath = [root selector],
{ child selector | descendant selector } ;

root selector = "$";
child selector = dot selector | index selector ;
dot selector = ".", label ;
descendant selector = "..", (label | index selector) ;
label = label first, { label character } ;
label first = ALPHA | "_" | NONASCII ;
label character = label first | DIGIT ;
index selector = "[", quoted label, "]" ;
quoted label = ("'", single quoted label, "'")

| ('"', double quoted label, '"') ;
single quoted label = { UNESCAPED | "\", ESCAPED

| '"' | "\'" } ;
double quoted label = { UNESCAPED | "\", ESCAPED

| "'" | '\"' } ;

ALPHA = ? [a-zA-Z] ? ;
DIGIT = ? [0-9] ? ;
NONASCII = ? [U+80-U+10FFFF] ? ;

(* non-ASCII Unicode characters *)
UNESCAPED = ? [U+20-U+10FFFF] - ["'\] ? ;

(* all valid JSON label characters
without quotes and backslashes *)

ESCAPED = ? [btnfru/\] ? ;

Figure 1.4: EBNF grammar of valid JSONPath queries in rsonpath.

1.3.1. Unicode escapes in labels

Valid JSON labels may contain arbitrary UTF-8 characters. Moreover, they can contain these
characters escaped as a unicode point sequence, and UTF-16 characters can be encoded as
two escaped sequences encoding the surrogate pair.

13

‘ Any character may be escaped. If the character is in the Basic Multilingual
Plane (U+0000 through U+FFFF), then it may be represented as a six-character
sequence: a reverse solidus, followed by the lowercase letter u, followed by four
hexadecimal digits that encode the character’s code point. The hexadecimal letters
A through F can be uppercase or lowercase. So, for example, a string containing
only a single reverse solidus character may be represented as "\u005C".

To escape an extended character that is not in the Basic Multilingual Plane, the
character is represented as a 12-character sequence, encoding the UTF-16 surrogate
pair. So, for example, a string containing only the G clef character (U+1D11E)
may be represented as "\uD834\uDD1E". ’ ([Bra17], 7. Strings, pages 8-9)

This means that there are many ways of representing the same label. A label "name" might
just as well appear in the document as "\u0110\u0097\u0109\u0101". This is a major issue
for our implementation, which needs to operate on a simple stream of bytes for maximum
performance. The JSON specification explicitly notes this issue:

‘ Software implementations are typically required to test names of object members
for equality. Implementations that transform the textual representation into se-
quences of Unicode code units and then perform the comparison numerically, code
unit by code unit, are interoperable in the sense that implementations will agree in
all cases on equality or inequality of two strings. For example, implementations
that compare strings with escaped characters unconverted may incorrectly find that
"a\\b" and "a\u005Cb" are not equal. ’ ([Bra17], 8.3. String Comparison, page
10)

This is indeed the case for our implementation. Properly dealing with this issue, i.e. converting
the labels in the source document to a normalised representation every time a label needs to
be compared, is prohibitively slow. Therefore, by default our implementation performs ordinal
comparison – labels "name" and "\u0110\u0097\u0109\u0101" are not equal. if both of these
labels were located in a document, then the query "$..name" would find only the former, while
"$..['\\u0110\\u0097\\u0109\\u0101']" would find only the latter.

14

Chapter 2

SIMD model

Single Instruction, Multiple Data (SIMD, pronounced sim-dee) is an umbrella term for paral-
lelisation techniques that do not involve additional processing units, instead utilising a single
unit to perform an operation on many data points in a single step. The idea is extremely
old, with simple vectorisation being presented by Lamport as long as ago as in 1975 [Lam75].
Today SIMD usually refers to the usage of special SIMD instructions, intrinsic to the CPU
platform, that enable such parallelisation.

Before we talk about special instructions, consider a simple problem that can be made
faster using SIMD with standard tools. We have two redundant sensors that provide us with
a stream of measurements. The input is two arrays of 8-bit values, a = a0, a1, . . . , aN−1,
b = b0, b1, . . . , bN−1, and the task is to find the first discrepancy in measurements, i.e. the
least index i such that ai ̸= bi, or a special None value if there is no such index.

A sequential algorithm would iterate from 0 to N−1 and compare the corresponding bytes.
However, assuming that the data lies sequentially in memory for the respective sensors, we
can be much more efficient by loading chunks of it into the CPU’s registers. Assume we’re
working on an architecture with 64-bit registers. Then we can load a block of 8 bytes from
a into one register, the corresponding block of 8 bytes from b into another, and XOR them
together. If the resulting integer has any lit bits, then there was a discrepancy in the data at
the position of that bit. Because loading a 64-bit register is about as fast as loading a single
byte into a register, we can hope for a speed-up up to a factor of 8. Indeed, the benchmark
described in Section 2.6 shows a 6 times speed-up between the functions listed in Figure 2.1.

The idea should be clear – we pack multiple data points into a single CPU register, so that
a single instruction can yield results for all the data at once. The code of this optimisation
(Figure 2.1) already exemplifies constraints on the data streams that need to be asserted for
SIMD operations to be sound – we describe these in Section 2.5.

2.1. Preliminaries

In this entire section we assume that the target CPU architecture is little-endian. This matters
when we interpret bit vectors as sequences of bytes – the first 8-bits of a vector are the first
byte. Note that this is not a requirement of our solution, as it works on big-endian machines
as well. A single integer is interpreted normally, however – the 8-bit number 11000110 is 198
in decimal and 0xc6 in hexadecimal.

We describe vectorial operations using two notations. The first is by specifying the raw
bits of a vector, e.g. saying that a 16-bit vector is equal to 0011001111110000. The other is
by interpreting the vector as individual numbers with given granularity. So the above vector

15

fn seq(a: &[u8], b: &[u8]) {
let N = a.len();
for i in 0..N {

if a[i] != b[i] {
return Some(i);

}
}
return None;

}

fn simd(a: &[u8], b: &[u8]) {
const SIZE = 8;
let number_of_blocks = a.len() / SIZE;
for i in 0..number_of_blocks {

let start = i * SIZE;
let end = (i + 1) * SIZE;
let a_vec = a[start..end].as_u64();
let b_vec = b[start..end].as_u64();
let xor = a_vec ^ b_vec;
if xor != 0 {

let idx = start +
(xor.trailing_zeros() / SIZE);

return Some(idx);
}

}
return None;

}

Figure 2.1: Discrepancy search algorithm, sequential (left) vs 64-bit vectorised (right). The
Requires a and b to follow assumptions described in Section 2.5.

interpreted with 16-bit granularity is [13296]16, under 8-bit granularity it is [51, 240]8, and
under 4-bit granularity it is [3, 3, 15, 0]4. Note that real SIMD operations usually have lowest
granularity of 8 bits, but to keep examples clear and concise we often use 4-bit granularity.
We sometimes display bytes in hexadecimal when presenting the values of both nibbles (4-bit
halves) is beneficial for clarity.

Code examples in this chapter are presented in Rust-like pseudocode – they omit most
details not essential for the thesis, but turning them into correct Rust should be an easy
exercise. We use some Rust-specific notation.

• Integer types are defined as the letter i or u followed by their size in bits, so u8 is a
byte, i32 is a 32-bit signed integer, etc. The special usize type is an integer guaranteed
to be of the same width as a pointer on the target architecture.

• The type [u8; 64] is an array of 64 bytes. Other sizes are also permitted, but must be
constant.

• The type &[u8] is a non-mutable reference to an array of bytes. The ampersand symbol
always signifies a reference to the type it precedes.

• An expression &x[i..j] for an array x represents the reference to a slice of the array
from the i-th (inclusive) to j-th (exclusive) element.

• Most functions that are supposed to find something in a byte stream return an Option
type, which is an algebraic union type of None and Some(T) for some type T. We
construct a value of this type like in functional languages, using None or Some(value).

2.2. SIMD extensions

Modern SIMD is achieved by additional CPU registers and special operations on those re-
gisters. The SIMD registers are larger than regular ones, starting at 128-bits. The operations

16

can be roughly categorised into three kinds:

• pack, take existing data in regular registers or memory and load them into the SIMD
registers;

• transform, manipulate the SIMD registers to produce new vectors;

• extract, convert a vector in a SIMD register into a regular value.

It is important to note that the transformations that can be done on SIMD are basically
logical gates – they take some input vectors and produce output vectors1. Since the SIMD
registers are separate from conventional registers, one must explicitly opt into the SIMD world
with the pack operations; and then to do any of the regular CPU instructions like conditional
jumps, one must explicitly opt out of that setting with the extract operations.

SIMD works best as a pipeline, where the SIMD operations can work on their vectors
uninterrupted, without switching between the two worlds. Because the individual operations
are a bit more costly, but also much more effective in terms of bytes processed per instruction,
local parallelism and branch prediction are massively impactful. This means that for fast
algorithms utilising SIMD we should strive to be branchless, i.e. avoid any conditional jumps
that the CPU might mispredict. Even more important is avoiding function calls – SIMD
registers need to be saved on the stack before a call, which defeats the pipeline. One can
deduce from this that conceptually a SIMD algorithm proceeds in three phases:

• prepare the data in SIMD registers;

• pipeline as many operations as possible with the SIMD registers;

• process the results, extracting data from the end of the pipeline.

The phases naturally correspond to the types of operations we have. We first prepare the
data by packing it into SIMD registers, transform the data in a pipeline, and then extract
and process the results.

2.2.1. Basic SIMD operations

Different CPU architectures have different SIMD instruction sets. Not only that, but some ar-
chitectures have many different SIMD instructions sets within themselves, e.g. x86 with SSE,
SSE2, SSE3, SSSE3, AVX, AVX2, AVX512. . . For this thesis we focus on the x86 architecture,
although it is important to note that only the classifier (Chapter 4) is architecture-specific,
while the main query engine loop is architecture-agnostic. We briefly describe the available
instructions, putting emphasis on AVX2, which is the most common instruction set and the
one we support in rsonpath.

Virtually all SIMD architectures have standard bitwise operations like AND, OR, as well as
common arithmetic, logical, and comparison operations. All of the latter operations can inter-
pret the vectors as packed values of given bit length. Recall that, for example, the 32-bit vec-
tor (00001111)4 interpreted with 8-bit granularity is a four-element sequence [15, 15, 15, 15]8,
while interpreted with 16-bit granularity is a two-element sequence [3855, 3855]16.

This granularity is meaningful for most non-bitwise operations. Consider vectors 11101111
and 00000001. Under 8-bit granularity the result of addition on them is 11110000. Under 4-bit
granularity the result is 11100000. This is because [239]8+[1]8 = [240]8, but [14, 15]4+[0, 1]4 =

1This relation to logical circuits is further formalised in Appendix B.

17

[14, 16]4. The 4-bit element overflows and wraps to 0, resulting in [14, 0]4. For comparison
operations this becomes even more meaningful. A comparison operation sets all the bits of
the result for the chunk of the vector for which the comparison was true. Therefore, if we
compare 11001100 with 11000011 under 8-bit granularity, we will get an all-zeroes vector,
whereas under 4-bit granularity we get 11110000, because the first 4-bit elements were equal,
and the second ones were not.

01000000 11011000 00011000 01111010 10101011 11101010 11100000 00111001

01000000 11010000 00011000 11010000 11111011 11101010 11100000 00000111

11111111 00000000 11111111 00000000 00000000 11111111 11111111 00000000

10100110

movemask

cmpeq

movemask

cmpeq

Figure 2.2: SIMD operation identifying positions at which two 64-bit vectors interpreted with
8-bit granularity agree. By examining the bits of the resulting 8-bit integer we can find the
positions. Left side shows the bit vectors, whereas the right side their decimal interpretation
under 8-bit granularity.

2.3. Intrinsics

SIMD is defined in terms of CPU instructions and registers. That is a fine interface for
compilers attempting to optimise user code written in a high-level language, but coding in
assembly would be unwieldy for regular developers.

Therefore, SIMD operations come with a set of library functions called intrinsics. These
are functions provided by authors of the SIMD instruction sets that are well-known to the
compiler and implemented in assembly using the SIMD instructions. The compiler encoun-
tering such a function call inlines the SIMD instructions at the call site. This allows us to
write code in a higher-level language like Rust while still getting full performance benefits of
using the low-level SIMD instructions.

When describing our algorithms we refer to intrinsics names instead of the actual CPU
opcodes. Note that intrinsics introduce only the thinnest level of abstraction – an intrinsic is
tightly bound to the CPU instructions it produces, and an x86 AVX2 intrinsic will produce
code that is valid only on an x86 architecture CPU supporting AVX2.

2.4. x86

The x86 defines many SIMD instruction sets developed by Intel, with vector sizes spanning
from 128-bit to 512-bit. The intrinsics names remain similar throughout the extensions,
differing only in the register width – e.g. AVX has _mm256_cmpeq_epi8, while AVX512 has
_mm512_cmpeq_epi8. An important operation available on all x86 SIMD implementations is
the movemask operation, which is an extract operation that allows smooth transitions from
the SIMD world to the sequential world.

The operation collapses a SIMD vector into a regular-sized value, turning chunks of the
SIMD vector of some granularity into the bits of the regular value by examining the source’s
most significant bits. In other words, applying movemask of 8-bit granularity to a vector of 64

18

bytes results in a 64-bit number in which the i-th bit is lit if and only if the most significant
bit of the i-th byte in the vector was lit. For example, deciding whether two vectors are
exactly equal can be done by vectorial cmpeq comparison and then collapsing the result with
movemask – the result is all-ones if and only if the two vectors were equal. This is a core
operation that allows us to quickly examine results of a SIMD pipeline. For an application
see the vectorised discrepancy algorithm in Section 2.6.

2.4.1. Instruction sets

SSE2

Streaming SIMD Extensions 2 were introduced in 2000 by Intel in Pentium 4. It is the oldest
widely used SIMD instruction set with support for integer operations (SSE supported only
floating-point operations). It utilises 128-bit wide registers labelled xmm0, xmm1, . . . , xmm15
(some old configurations have only eight registers, most have sixteen). It gives us the __m128i
type representing a single SIMD vector and most typical operations on such vectors:

• loads: _mm_set1_epi8, _mm_load_si128, . . .

• arithmetic operations: _mm_add_epi8, _mm_sub_epi8, . . .

• logical operations: _mm_and_si128, _mm_xor_si128, . . .

• comparisons: _mm_cmpeq_epi8, _mm_cmpge_epi8, . . .

• movemask: _mm_movemask_epi8.

The set1 operation allows us to set all chunks of a vector to the same value of given size.
So _mm_set1_epi8(byte) replicates the byte 16 times into the vector. The _mm_load_si128
simply loads 16 bytes from a given pointer into a SIMD register. For SSE2 it is extremely
important to align the data to the 16-byte boundary, as loading unaligned data (with a special
_mm_loadu_si128 intrinsic) is reported in folklore to incur massive performance penalties (see
Section 2.5).

AVX2

Advanced Vector Extensions 2 were introduced in 2013 by Intel with the Haswell architec-
ture (4th generation Intel Core), improving on the previous AVX extension. It is the most
mainstream SIMD instruction set, available in any desktop CPU shipped in the last decade.
It utilises 256-bit wide registers labelled ymm0, ymm1, . . . , ymm15, extending the xmm registers
from SSE. The type representing an AVX2 vector in intrinsics is __m256i. In accordance with
the x86 SIMD naming scheme, the intrinsics for AVX2 are, among others:

• loads: _mm256_set1_epi8, _mm256_load_si256, . . .

• arithmetic operations: _mm256_add_epi8, _mm256_sub_epi8, . . .

• logical operations: _mm256_and_si256, _mm256_xor_si256, . . .

• comparisons: _mm256_cmpeq_epi8, _mm256_cmpge_epi8, . . .

• movemask: _mm256_movemask_epi8.

19

AVX512

Extensions introduced by Intel in 2013 for workstations and in 2017 for consumer CPUs
with Skylake-X. It is the cutting-edge SIMD instruction set for x86, utilising 512-bit wide
registers zmm0, zmm1, . . . , zmm35 (number of SIMD registers increased to 36). Being the
newest extensions, these are not as widespread as AVX2, and support for their intrinsics
is still experimental in Rust. Additionally, heavy use of 512-bit instructions may lead to
performance degradation, due to power consumption and heat issues. In our implementation
we focus on AVX2 as the main target.

2.4.2. Lanes

Even though the SIMD registers are larger than 128 bits in AVX and above, they are actually
divided physically into lanes of size 128. Most operations are unable to move any data between
the lanes [ML17]. This is usually unnoticeable, as most of the time the operations performed
on separate chunks of the vector are independent of each other. Sometimes, however, one
would like to perform an operation on the entire vector at once, treating it with granularity
larger than 128.

An example is the bitwise shift operation. We move each bit of the vector a fixed number
of positions to the left or to the right, shifting in zeroes in missing spots. One would expect
that a left-shift by one position the 256-bit vector 1256 would result in 12550. That is not the
case – the lanes are separate and are shifted separately, causing the result to be 1127011270.

This is an issue if we want to perform operations across lane boundaries. The physical
separation carries further implications, as some operations are available in cross-boundary
variants, but their performance is noticeably lower than of the basic variant instruction. It is
best to avoid cross-boundary operations if possible.

2.4.3. CLMUL – carry-less multiplication

The carry-less multiplication extension was introduced in 2010 as an improvement for block
cipher algorithms working in Galois/Counter mode (for example AES-GCM). It is defined
as multiplication in the GF (2) field, where a bit string a0a1 . . . a63 represents a polynomial
a0 + a1X + a2X

2 + . . .+ a63X
63. The formal definition of the operation is as follows: given

two bit strings a, b of length 64 define the carry-less product of a and b as:

ci =
i⊕

j=0

ajbi−j ,

i.e. an exclusive alternative of products of bits of a and b.
At first glance it is not at all clear how this operation could be useful for the purpose

of querying JSON documents, but it turns out to be a crucial optimisation for determining
escape sequences [LL19]. The key observation is that by setting b = 164 we obtain the following
formula:

ci =
i⊕

j=0

aj ,

which is simply a prefix-XOR operation. The application of this is described in detail in
Section 4.2. This operation is exposed via the _mm_clmulepi64_si128 intrinsic, and it is
important to note that it operates only on 64-bits – one needs to select which halves of a and
b will get multiplied. So this is in fact a 64-bit-width SIMD operation.

20

2.4.4. Shuffle – nibble lookup tables

The shuffle operation, available on x86 via _mm_shuffle_epi8, _mm256_shuffle_epi8, or
_mm512_shuffle_epi8, is arguably the most important optimisation for input character clas-
sification, and a key idea of [ML17] and [LL19]. In short, it allows us to use the lower nibbles
(4-bit parts) of a byte as indices to a lookup table. This operation is straightforward for
a 128-bit vector, as they contain 16 bytes, so we can express all valid indices with a 4-bit
number.

As a simple example, take the 128-bit vector index that represents [15, 14, . . . , 0]8 when
taken with 8-bit granularity. Then we can reverse the bytes in any SIMD vector source with
_mm_shuffle_epi8(source, index). The operation can be simply defined, for all 0 ≤ i < 16:

shuffle_epi8(source, index)[i] = source[index[i] & 0x0F]

For a more complicated example see Figure 2.3.
For larger vectors indices are no longer between 0 and 24 − 1. Additionally, because

of the physical lane separation (Section 2.4.2), the operations disallow shuffling across lane
boundaries. Instead, multiple shuffle operations are performed in parallel on independent
lanes. The nibbles in the first 16 elements of the index vectors are used to index the first
16 elements of the source vector, next 16 elements are used to index between 16 and 31, etc.
To make this precise, here is the pseudocode representing this operation for a 512-bit width
SIMD vector:

fn _mm512_shuffle_epi8(a: [u8; 64], b: [u8; 64]) {
let mut result = [0; 64];
for j in 0..64 {

let lower_nibble = b[j] & 0x0F;
// Integral division. If 0 <= j < 16, this is 0.
// If 16 <= j < 32, this is 16, etc.
let offset = (j / 16) * 16;
let index = lower_nibble + offset;
result[j] = a[index];

}
return result;

}

The key observation is that we can consider this operation as a lookup instead of a shuffle.
We can use it to quickly classify a vector of bytes into at most 16 buckets depending on their
lower nibble. By performing a second lookup on the upper nibble (by simply shifting all bytes
right by 4) and combining the results we get a generic lookup operation. This is applied in
the core part of the branchless classifier, described in Section 4.1.

2.5. Padding and alignment

For the algorithm in Figure 2.1 to be sound, two conditions must be met:

1. the length of the array we wish to split into blocks has to be divisible by the block size
of k bytes; and

2. each block must be k-byte aligned.

21

0x75 0x92 0x58 0x01 0xb6 0xd2 0xdb 0xcb 0x13 0x59 0x1f 0x3a 0xe8 0xad 0xef 0x8f

0x32 0x32 0x5e 0xbd 0x16 0x68 0xe2 0x0a 0xe8 0xe9 0x78 0xf2 0x6f 0xb5 0x5d 0x8b

0x68 0x5e 0xe8 0x32 0xe2 0x5e 0xf2 0xf2 0xbd 0xe9 0x8b 0x78 0xe8 0xb5 0x8b 0x8b

shuffle

Figure 2.3: Example shuffle operation where a source vector (middle) gets shuffled with the
index vector (top). The lower nibble of each index byte (underlined) is used as an index into
the source vector. For example, the bytes with lower nibble 2 get mapped to 0x5e located at
index 2 of the source vector (dark grey), while bytes with lower nibble f get mapped to the
last source value (light grey). Some source values are never used, as there are no bytes with
lower nibble 0 in the index vector; these are indices 0, 4, 7, 12, and 14.

2.5.1. Padding

The first condition is rather obvious – we would go outside the bounds of input otherwise.
There are two natural ways of enforcing this precondition.

• One may limit the vectorised algorithm to the prefix of the input that is divisible by
the block size, and then perform the final phase of the algorithm sequentially on the
remaining, small portion of data. The disadvantage of this approach is that it essentially
requires us to write two separate algorithms. It might also be not obvious how to flow
carry information (as outlined in Section 4.2.1 and Section 4.3.1) from the SIMD phase
to the sequential phase.

• In case of many algorithms it is possible to pad, artificially increasing the length to be
divisible by k. For our discrepancy example, one can simply pad the arrays with zeroes
without changing the output of the algorithm. In case of JSON processing this approach
is also viable – we pad the input document with a number of space characters (U+0020)
that will necessarily be ignored. Somewhat equivalently, one can pad the input string
with NULL terminators.

The latter approach is easier to employ, since it needs to be done only once before feeding
the input to the algorithm and is separated from the implementation itself. In the rest of the
paper we assume that the input size is divisible by the block size.

2.5.2. Alignment

A somewhat subtler issue is alignment. All types of data have their alignment, which indicates
the correct memory addresses at which a value of the type can be stored. Alignment is given in
bytes – 32-bit integers are 4-aligned, 64-bit integers are 8-aligned, etc. This alignment must be
preserved – on many platforms loading a misaligned value incurs a hefty performance penalty
at best, or results in an incorrect value read at worst. Versions of ARM before ARMv6 were

22

permitted to throw an MMU exception on unaligned access, or just silently coerce the access
into aligned, yielding incorrect results.2

Because of subtle differences in how unaligned reads are treated on different architectures,
dereferencing a misaligned pointer in Rust is undefined behaviour. Therefore, the code in
Figure 2.1 implemented in Rust would be incorrect, because the conversion between a block
of input bytes to u64 is undefined behaviour, unless the input is aligned. Moreover, AVX2
aligned load instructions may cause a segmentation fault if the input data is not aligned. Our
implementation needs to take special care to always use data aligned to an expected boundary.
Since this would devolve into a quagmire of hard to track bugs if done on raw pointers, our
solution is to solve alignment on a type level (see Appendix A).

A byproduct of loading misaligned data into large SIMD vectors is that the loads will
always happen across a CPU’s cache line, which is more costly. For example, in AVX512 on
an Intel CPU, the size of the vector is exactly the same as of the cache line – 64 bytes. Hence
every load of misaligned data on AVX512 will be across cache lines. Therefore, while aligning
data does not necessarily improve performance, misaligned loads may degrade it.

2.6. Example vectorial algorithm – discrepancy search

As a motivating example we can apply x86 SIMD extensions to the discrepancy search prob-
lem described in the introduction of this chapter, and vectorised with 64-bit registers in
Figure 2.1. The algorithm is similar to the 64-bit case. We will load a chunk of data into
SIMD registers, use the cmpeq_epi8 intrinsic to compare the two vectors, extract that data
with a movemask_epi8, and check if it is all-ones. If there are any zeroes, we report the
first one’s position. The pseudocode for AVX2 is presented below, with SSE2 and AVX512
solutions being very similar.

fn discrepancy_size256_impl(a, b) {
const SIZE: usize = 32;

// Produce a sequence of pairs of 32-byte blocks from both inputs
// and mark them with their index starting from zero.
let blocks = a.iter_blocks().zip(b.iter_blocks()).enumerate();

for (i, (a_block, b_block)) in blocks {
let a_vec = _load_si256(a_block);
let b_vec = _load_si256(b_block);
let xor = _cmpeq_epi8(a_vec, b_vec);
let mask = _movemask_epi8(xor) as u32;

if mask != 0xFFFFFFFF {
let idx = i * SIZE + mask.trailing_ones();
return Some(idx);

}
}
return None;

}

2This appears to be easily verifiable folklore, usually in form of confused developers reporting errors when
accessing 32-bit values not aligned to the 4-byte boundary.

23

In case of AVX512 there is no separate cmpeq function, only a fused version that returns the
mask result: _mm512_cmpeq_epi8_mask. Regardless, the reported latency and throughput is
not worse than of the two separate instructions in AVX2 – cmpeq has latency 1 and movemask
2, while AVX512’s cmpeq_mask has latency 3 [Int22]. See Table 2.1 for full results.

The construction of this algorithm follows the outline we described above. We first pre-
pare the data into two SIMD registers, transform it with cmpeq, and then extract it into a
bitmask. Then the conditional check on the mask must occur, as well as a jump to the next
iteration of the loop.

Implementation Mean time (µs) Throughput (GB/s) Ratio
Sequential (8-bits/iteration) 2381.0 1.76 1.0000
Machine word (64-bits/iteration) 572.2 7.33 0.2403
SSE2 (128-bits/iteration) 375.8 11.16 0.1578
AVX2 (256-bits/iteration) 313.7 13.37 0.1317
AVX512 (512-bits/iteration) 311.4 13.47 0.1308

Table 2.1: Benchmark results of discrepancy-search.

Figure 2.4: Throughput plot of Table 2.1

2.6.1. Performance

The data is 4 megabytes of random bytes, equal between both vectors except for the final
byte. We benchmarked the sequential and machine-word vectorised solutions (see Figure 2.1)
against three different SIMD solutions: SSE2, AVX2, and AVX512. Unsurprisingly, largest
SIMD vector size has the best performance, as shown in Table 2.1 and Figure 2.4. It is
pretty close to the ideal throughput of 17 GB/s (see Section 3.1.1). A perhaps surprising
characteristic is that AVX512 is not much faster than 256-bit AVX2. Our hypothesis is that
this is the AVX512 throttling in play – the power consumption and heat generation on the
CPU are higher than the gains obtained from a larger SIMD vector.

24

Chapter 3

Branchless streaming algorithms

In this chapter we present a number of experiments with SIMD acceleration that are related
to the query engine, but ultimately did not find a place in the engine implementations. We
feel their inclusion is beneficial for better understanding of the final classifier implementation,
described in Chapter 4.

3.1. Find byte – memchr

The simplest query operation we can perform on a stream on bytes is to find the first occur-
rence of a specific byte. The core implementation of such an algorithm is the memchr function
from C standard library. It is a very well optimised routine, actually using SIMD operations
on x86 under the hood, albeit in handwritten assembly instead of C intrinsics. As the exper-
iment we compared our implementations to the standard memchr implementation to see if we
could achieve its level of throughput with a SIMD pipeline.

A sequential algorithm for this problem is trivial. For a SIMD approach with vector size
of k-bytes we first load the byte we want to find, b, into a SIMD register replicated k times.
Then we iterate over blocks of k bytes and use cmpeq_epi8 to compare each of the k bytes to
b. Then we can movemask and compare the resulting mask to 0 to see if b was found.

fn find_byte(byte, bytes) {
const SIZE: usize = 32;
let byte_mask = _set1_epi8(byte as i8);
// Sequence of 32-byte blocks marked with their index.
let blocks = bytes.iter_blocks().enumerate();

for (i, block) in blocks {
let vec = _load_si256(block);
let cmp_vector = _cmpeq_epi8(vec, byte_mask);
let cmp_packed = _movemask_epi8(cmp_vector);

if cmp_packed != 0 {
let idx = i * SIZE + cmp_packed.trailing_zeros();
return Some(idx);

}
}
return None;

}

25

Using that code we can achieve throughput comparable, yet inferior, to the out-of-the-box
memchr implementation.

Additionally, we compare an idiomatic Rust one-line implementation of this search using
iterators. Examining the assembly output of such a solution reveals that the compiler vector-
ises the search by loading 8-byte fragments into CPU registers and comparing them, similarly
to the Machine word implementation from Table 2.1.

fn find_byte_rust_optimised(byte, slice) {
slice.iter().position(|&x| x == byte)

}

Implementation Mean time (ms) Throughput (GB/s) Ratio
Sequential (8-bits/iteration) 19.361 1.733 1.0000
Rust-optimised (64-bits/iteration) 9.324 3.598 0.4816
SSE2 (128-bits/iteration) 2.941 11.407 0.1519
AVX2 (256-bits/iteration) 2.604 12.888 0.1345
AVX512 (512-bits/iteration) 2.250 14.911 0.1162
memchr 1.944 17.268 0.1004

Table 3.1: Benchmark of find-byte implementations.

Figure 3.1: Throughput plot of Table 3.1

3.1.1. Performance

The data is constructed by repeating all lowercase ASCII letters until 32 MiB are generated.
Then a single uppercase ’X’ is appended. The implementations look for the uppercase ’X’,
thus they have to read the entire input. We benchmarked the sequential and Rust-idiomatic
solution (using a standard library position function) against four different SIMD solutions:

26

SSE2, AVX2, AVX512, and memchr from glibc. The memchr implementation can be considered
as state-of-the-art and the absolute limit on how performant any nontrivial algorithm on a byte
stream can be – finding a single byte is the most basic problem one could define. Therefore,
around 17 GB/s is what we consider a performance ceiling.

A naive sequential implementation is slower than Rust’s well-optimised library method,
which is not surprising. SIMD implementations outclass all others, with larger vector sizes
being more performant. The memchr implementation on the architecture of the benchmark
machine (x86_64) appears to be handwritten assembly code, that combines SIMD vectorisa-
tion with loop unrolling – 4 blocks are processed in a single loop iteration.

3.2. Find sequence – memmem

An extension of the previous algorithm is to find a sequence of m bytes b1b2 . . . bm in the input.
This could be useful for locating labels in the input JSON. To arrive at a general algorithm,
first consider the problem for m = 2. In such a case we can replicate b1 into one vector, b2 into
another, and then compare batches of k bytes against both with two cmpeq_epi8 instructions.

If we have a vector where marked positions signify “b2 is at this position in the input”, then
by bitwise shifting that vector to the right1 by one we get a vector where marked positions
signify “b2 is at the next position in the input”. By combining the vectors “b1 is at this
position” with “b2 is at the next position” with an AND operation we get “the sequence b1b2
is at this position”.

One approach would be to perform this transformation on each block of k bytes and with
that find all occurrences of b1b2. This does not work. There is an edge case where the block
segmentation causes b1 to occur at the end of a block and b2 at the start of the next block.
Such sequences will not be detected by this naive algorithm. There are two possible solutions
to this.

1. Pipeline state – introduce state to the pipeline that will be carried from block to
block; in this case, a single bit indicating whether the previous block ended with b1.
In practice, to avoid branching, we store a full bitmask where the first bit is lit if and
only if the previous block ended with b1. Then that mask can combined with the main
algorithm with a simple OR.

2. Overlapping windows – run the algorithm on two blocks at a time, current and next .
This way, a sequence spanning two blocks will always be caught in some iteration of the
algorithm. Naively, this would cause almost all blocks to be processed twice. However,
when we calculate transformations for a next block, then the results can be used when
it becomes the current block in the next iteration.

The overlapping windows solution causes some work to be done twice on the same block, but
it scales better than the state solution, since for a sequence of length m we would need to
hold m− 1 masks.

The general algorithm will work for any m ≤ k. We compute the m masks for each of the
bytes, shift the i-th by i−1 to the right, and AND them together. Care has to be taken during
the final step to enable local parallelism for the executing CPU. To see this on an example,

1Due to endianness, this might be counterintuitive. While we might think about the input stream being
read left-to-right, in a bitmask shifting left actually means moving the stream forward, while shifting right
moves it backwards.

27

assume that m = 8 and we have computed masks mask1, mask2, . . . , mask8. Consider the two
ways of computing the result mask and7:

let and1 = mask1 & mask2;
let and2 = and1 & mask3;
let and3 = and2 & mask4;
let and4 = and3 & mask5;
let and5 = and4 & mask6;
let and6 = and5 & mask7;
let and7 = and6 & mask8;

let and1 = mask1 & mask2;
let and2 = mask3 & mask4;
let and3 = mask5 & mask6;
let and4 = mask7 & mask8;
let and5 = and1 & and2;
let and6 = and3 & and4;
let and7 = and5 & and6;

The left implementation is serial – each result depends on the previous result. Because of
this data dependence, the CPU is forced to execute those instructions one-by-one, waiting for
andi to finish before computing and(i + 1). On the right, data independence is maximised
– the values of and1, and2, and3, and4 can all be computed in parallel, same is true for and5
and and6. When data flow is drawn out, the code on the left forms a linear path, while the
code on the right forms a binary tree. For each m the optimal shape of a tree needs to be
considered and proper instructions emitted.

For m > k we employ a heuristic – first try to match the prefix of the sequence of length
k in vectorised fashion. If it matches, compare the remaining suffix sequentially.

3.2.1. Code synthesis with Rust procedural macros

Since each value of m requires different code – more instructions, different shape of the final
AND tree – and it has to be branchless, there are m different functions computing results for
each of them. For a maximal value of m = 32 this results in over five thousand lines of Rust
code just for AVX2. It would be asinine to write that code manually, therefore we use code
generation enabled by the Rust ecosystem.

Rust allows parsing and synthesising more Rust code procedurally, with a combination of
build scripts [Rus15], types representing Rust abstract syntax trees [Tol17] and quasiquotation
[Tol16]. Quasiquotation originated in Lisp [Baw99] and is a well-known technique in languages
like Haskell [Mai07]. It allows a programmer to write down code in a formal language and
then manipulate its structure procedurally like any other data type. Thanks to it, we can
write relatively short code describing the shape of the solution for any m (around 300 lines for
AVX2), and then manipulate it to produce all 32 versions of the function during compilation.

3.2.2. Performance

The data consists of 32 MiB of all lowercase ASCII letters sorted lexicographically, and then
a shuffled sequence of letters. The implementations look for prefixes of this sequence. We
compared an idiomatic Rust implementation2 and a widely used crate memchr [Gal15] with
its memmem::find function to two SIMD implementations: SSE2 and AVX2. We did not
implement an AVX512 version.

Interestingly enough, sequential implementation works significantly faster on sequence
lengths being powers of two. This is because of Rust’s compiler – if we examine the produced
assembly we can see automatic vectorisation. The code produced for length 4, for example,
automatically packs 4 bytes at a time into a single register, just like we did in our first attempt

2Using the windows function, which creates a stream of all slices of given length, and then using position
to find the occurrence of the sequence.

28

Figure 3.2: Throughput plot of Table 3.2.

at optimising the Discrepancy problem (Figure 2.1). For a sequence of 3 bytes it cannot apply
that trick, so the performance is worse.

Between AVX2 and SSE2 the longer SIMD vector is clearly the winner. However, for long
sequences, it appears that it might be more beneficial to run the heuristic on shorter sequences
to quickly discard false matches, since SSE2 performs slightly better in that regard.

The memmem implementation has stable performance that outclasses sequential implementa-
tions for most sequences, but performs significantly worse than SIMD versions. It is important
to note that our benchmark is ran on only a single input that might not be representative of
real-world use cases, and we only consider throughput, while the memchr crate puts some em-
phasis on latency. However, it appears like our SIMD implementations could be a promising
avenue of improvement for the crate.

29

Implementation Length Mean time (ms) Throughput (GB/s) Ratio
Sequential 2 21.004 1.598 1.00
memmem 2 22.910 1.465 1.09
SSE2 (128-bit) 2 4.137 8.110 0.20
AVX2 (256-bit) 2 2.682 12.513 0.13

Sequential 3 30.223 1.110 1.00
memmem 3 22.937 1.463 0.76
SSE2 (128-bit) 3 5.243 6.400 0.17
AVX2 (256-bit) 3 2.795 12.006 0.09

Sequential 4 20.673 1.623 1.00
memmem 4 22.866 1.467 1.11
SSE2 (128-bit) 4 6.257 5.362 0.30
AVX2 (256-bit) 4 3.991 8.408 0.19

Sequential 8 21.320 1.574 1.00
memmem 8 22.955 1.462 1.08
SSE2 (128-bit) 8 10.549 3.181 0.49
AVX2 (256-bit) 8 6.5275 5.140 0.31

Sequential 15 25.950 1.293 1.00
memmem 15 22.911 1.465 0.88
SSE2 (128-bit) 15 17.898 1.875 0.69
AVX2 (256-bit) 15 11.598 2.893 0.45

Sequential 16 24.339 1.379 1.00
memmem 16 22.900 1.465 0.94
SSE2 (128-bit) 16 19.084 1.758 0.78
AVX2 (256-bit) 16 11.999 2.796 0.49

Sequential 32 25.299 1.326 1.00
memmem 32 22.898 1.465 0.91
SSE2 (128-bit) 32 19.229 1.745 0.76
AVX2 (256-bit) 32 21.388 1.569 0.85

Sequential 33 65.112 0.515 1.00
memmem 33 22.897 1.465 0.35
SSE2 (128-bit) 33 19.159 1.751 0.29
AVX2 (256-bit) 33 21.298 1.575 0.33

Sequential 48 65.159 0.515 1.00
memmem 48 22.913 1.464 0.35
SSE2 (128-bit) 48 19.210 1.747 0.29
AVX2 (256-bit) 48 21.351 1.572 0.33

Table 3.2: Benchmark of the various find-byte-sequence implementations for different sequence
lengths.

30

3.3. Vectorised depth calculation

The first version of our engine vectorised depth calculation instead of character classification.
While we discarded this idea, since the classifier had better performance characteristics, the
algorithm is interesting on its own.

The idea is to provide an interface that would allow to query document depth at any
point in a JSON tree. The exact interface we want to fulfil is an algorithm going block-by-
block that will allow us to answer whether the depth at a given spot in the block is greater
or equal to some value (which we will call a query), and compute the depth at the end of
the block. Sequentially, the algorithm is very simple – every occurrence of ’{’ or ’[’ (called
opening characters) increases the depth by one, while every occurrence of ’}’ or ’]’ (called
closing characters) decreases depth by one.

The user goes block by block and keeps the current accumulated depth. At the end of
each block the depth change from the block is added to the accumulator. When depth at a
given point needs to be known exactly, e.g. on a closing character, the user asks if the depth
withing the block is greater or equal to some value. Vectorially, we have two approaches for
providing such a structure – eager and lazy.

3.3.1. Eager implementation

The key observation is that depth at a given point is equal to the prefix sum of the input, where
opening characters are interpreted as 1, closing characters as −1, and all other characters as
0. If we can calculate a prefix sum using SIMD, then we get a vector of depths.

SIMD processing of prefix sums has been studied and benchmarked in a recent paper
[ZWR20]. Based on those results we chose the Horizontal SIMD algorithm, which scores best
in throughput benchmarks despite not being work-efficient – it performs O(n log n) SIMD
operations for input length n. In step i it computes the prefix sums of all fragments of length
2i of the input. Conceptually, we construct a binary tree over the data of logarithmic depth.

An issue arises with vectors comprised of many lanes (Section 2.4.2). Because of physical
isolation shifts occur within lanes, so shifting by 128-bits always results in all-zeroes. To work
around that, as the last level of the tree an AVX2 implementation needs to manually extract
the sum of elements in the first lane, broadcast it over the second lane, and then add. For
pseudocode see Figure 3.3.

3.3.2. Lazy implementation

In an eager implementation a block is loaded, the prefix sum computed, and then queries
answered instantly. However, in a typical JSON document the depth does not change too
sharply within a block – opening characters and closing characters are not too densely packed
– making locations where a query is required few and far between. Therefore, instead of
calculating the entire depth table up front, we can just produce bitmasks of where opening
characters and closing characters are, and report the total depth change within the block.
When we are asked for depth at a given point, we can calculate it from the masks with a
simple shift and popcount.

As an additional heuristic, if we want to ask whether depth decreased by k within a block
and we know that there are strictly less closing characters in the block than k, then we can
immediately say no without calculating the actual depth. This makes the algorithm much
more efficient, especially on real-life JSON documents.

31

let vector1 = _sub_epi8(closing_vector, opening_vector);
let vector2 = _add_epi8(vector1, _slli_si256(vector1, 1));
let vector4 = _add_epi8(vector2, _slli_si256(vector2, 2));
let vector8 = _add_epi8(vector4, _slli_si256(vector4, 4));
let vector16 = _add_epi8(vector8, _slli_si256(vector8, 8));

let halfway = _extract_epi8(vector16, 15);
let halfway_vector = _set1_epi8(halfway);
// SECOND_LANE is a constant mask zeroing the first lane.
let halfway_vector_second_lane_only = _and(halfway_vector, SECOND_LANE);

let vector32 = _add_epi8(vector16, halfway_vector_second_lane_only);

let array = [0; 32];
_storeu_si256(array.as_ptr(), vector32);
return array

Figure 3.3: Eager depth calculation for 256-bit SIMD with 128-bit lanes.

3.3.3. Performance

The data used in the experiment is the wikidata-combined.json totalling 71.42 MB, which
is also the principal dataset for our main benchmarks (see Chapter 6 for more details). The
implementations process this data, accumulating the depth and querying whether it is greater
or equal to 5 at every step. We compared the sequential version to eager SSE2 and AVX2
implementations, as well as lazy SSE2, AVX2, and AVX512 implementations.

Lazy implementations consistently perform better than all others, with larger vector sizes
providing reliable performance gains. We conclude that for our specific version of the stream-
ing prefix sum problem, where all values are in the set {−1, 0, 1} and most are 0, the lazy
SIMD approach is the most efficient.

Figure 3.4: Throughput plot of Table 3.3.

32

Implementation Mean time (ms) Throughput (GB/s) Ratio
Sequential 151.470 0.472 1.00
SSE2 58.535 1.220 0.39
AVX2 54.372 1.314 0.36
Lazy SSE2 31.223 2.287 0.21
Lazy AVX2 16.264 4.391 0.11
Lazy AVX512 13.275 5.380 0.09

Table 3.3: Benchmark of the depth calculator implementations.

33

Chapter 4

Vectorised classifier

The core of our algorithm is a SIMD pipeline that quickly recognises JSON structural tokens
(see Section 1.3). This vastly decreases the amount of data that the main loop needs to
process, discarding all irrelevant fragments like whitespace and atomic values. Its speed
depends largely on the shuffle operation (see Section 2.4.4) and a specialised lookup table.

The problem we need to solve is marking braces and colons with SIMD. This is not
straightforward, as those characters can be located within strings. In other words, characters
between pairs of matching double quotes need to be ignored. This poses another issue, as
not all double quotes delimit strings – some of them may be escaped with backslashes. For
example:

• JSON string "x{}[]:" contains brackets and a colon that are not considered structural;

• JSON string "x\"" contains a single escaped double quote;

• JSON string "x\\" contains a single escaped backslash; none of the double quotes are
escaped, demonstrating that it is not sufficient to just ignore double quotes preceded by
backslashes.

We present a general way of creating efficient SIMD lookup tables for the shuffle in-
struction that can be of use for quick parsing of other document formats. We then describe
an algorithm dealing with escaped and quoted sequences, largely analogous to Langdale and
Lemire’s solution in simdjson [LL19].

4.1. Structural lookup table

Our algorithm has to solve a special case of a more general classification problem, asking to
classify an input vector of n bytes into k buckets. It can be stated formally as:

Problem 4.1 (Classification). Fix a classification function f : {0x00, 0x01, . . . , 0xff} →
{0, 1, . . . , k−1}. Given a vector a of n bytes compute the vector b = [f(a0), f(a1), . . . , f(an−1)]8.

As usual, a sequential solution is trivial. However, we claim that for binary classification (k =
2) it can also be efficiently solved using few SIMD instructions, assuming some constant vectors
are precomputed. First we define auxiliary terms. Assume k = 2 and fix the classification
function f . We identify each byte with a pair of an upper and lower nibble, e.g. 0x3a is
isomorphic to ⟨3, a⟩. Define Nib := {0, 1, . . . , e, f}.

35

Definition 4.1 (Acceptance Set). For a given nibble u ∈ Nib its acceptance set is the set of
all the nibbles l that cause ⟨u, l⟩ to be accepted, i.e.

{l ∈ Nib | f(⟨u, l⟩) = 1}.

Define low(u) : Nib → P(Nib) as a function assigning to each nibble u its acceptance set.

Definition 4.2 (Accepted Group). An accepted group is defined by a set of upper nibbles
that have the same acceptance sets. Formally, consider the equivalence relation ≡ given by
the kernel of low and let Nib/≡ be its quotient set. Then the set G of all accepted groups is
defined as:

G = {⟨[u]≡, f(u)⟩ |u ∈ Nib}.

It is easy to see that it contains exactly |Nib/≡| groups.

Definition 4.3 (Overlapping groups). Two groups ⟨U1, l1⟩, ⟨U2, l2⟩ ∈ G are overlapping if
U1 ̸= U2 and l1 ∩ l2 ̸= ∅.

As an example, consider a function that assigns 1 to exactly the bytes 0xa1, 0xa2, 0xb1, 0xb2, 0xc2.
Then:

low(a) = {1, 2},
low(b) = {1, 2},
low(c) = {2},

G = {⟨{a, b}, {1, 2}⟩, ⟨{c}, {2}⟩},

and the two groups in G are overlapping, since they share the element 2.
Depending on the properties of the group set G we can distinguish three cases of increasing

complexity for the classification problem. Note that |G| ≤ 16, since there are only 16 possible
nibbles.

4.1.1. Non-overlapping groups

If G contains no overlapping groups, then the simplest solution is to map lower and upper
nibbles from a single group to a unique value and compare the results with cmpeq. Take an
arbitrary ordering of groups in G, ⟨u1, l1⟩, . . . , ⟨u|G|, l|G|⟩. Then construct an upper table as a
vector utab such that utab[x] = i if x ∈ ui, and utab[x] = 0 otherwise. Analogously construct
a lower table ltab, ltab[x] = i ⇐⇒ x ∈ li, and ltab[x] = 255 otherwise. Naturally, |G| < 255.
Then the required classification vector b is obtained as:

let upper_source = shiftright_epi8(source, 4);
let ltab_lookup = shuffle_epi8(ltab, source);
let utab_lookup = shuffle_epi8(utab, upper_source);
let b = cmpeq_epi8(ltab_lookup, utab_lookup);

There is one issue with this – x86 SIMD does not have a shiftright_epi8 instruction.
In fact, it has no 8-bit shift instructions. The exact reasons for that are unknown. However,
it can be simulated with two instructions – first, 16-bit right shift by 4, then zero the upper
nibbles with a precomputed mask1. Both these instructions have latency 1. The total cost of

1Zeroing the upper nibbles is important, because the exact semantics of shuffle make bits there meaningful.
We omit these details as completely irrelevant – for all our purposes we want the upper nibbles to be zero.

36

0x7b 0x22 0x5c 0x22 0x3a 0x5b 0x22 0x7a 0x22 0x3a 0x32 0x7d 0x5d 0x7d

{ " \ " : [{ { " z : : 7 }] }

0x07 0x02 0x06 0x02 0x03 0x05 0x07 0x02 0x07 0x02 0x03 0x03 0x03 0x07 0x05 0x07

0x02 0xff 0x02 0xff 0x01 0x02 0x02 0xff 0x01 0xff 0x01 0xff 0xff 0x02 0x02 0x02

{

0x7b

: [{

0x7b

0x02 0x00 0x00 0x00 0x01 0x02 0x02 0x00 0x02 0x00 0x01 0x01 0x01 0x02 0x02 0x02

" [: "

0x7d 0x5d 0x7d

}]}

0x020x020x02

0x07 0x03

0xff 0x00 0x00 0x00 0xff 0xff 0xff 0x00 0x00 0x00 0xff 0x00 0x00 0xff 0xff 0xff

srli

cmpeq

shuffle

shuffle

ltab

utab

0x22

Figure 4.1: JSON document classified using the structural classifier’s ltab and utab lookup
tables.

the entire lookup is thus five SIMD operations, each of which has latency 1. The two shuffles
can be effectively locally parallelised by the CPU, so the expected time of execution is four
cycles.

As it happens, the non-overlapping case is the one sufficient for our JSON structural
classifier. The structural characters are:

• ’{’ and ’}’ – 0x7b, 0x7d,

• ’[’ and ’]’ – 0x5b, 0x5d,

• ’:’ – 0x3a,

• ’,’ – 0x2c.

We ignore commas in our implementation2, so the groups are:

{⟨{5, 7}, {b, d}⟩, ⟨{3}, {a}⟩},

and they are non-overlapping. Consequently, the lower and upper lookup table used in our
classifier are:

utab = [0x00, 0x00, 0x00, 0x02, 0x00, 0x01, 0x00, 0x01,

0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]

ltab = [0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,

0xff, 0xff, 0x01, 0x02, 0xff, 0x02, 0xff, 0xff]

2Although including them would not introduce an overlapping group, so extending the classifier with
commas is straightforward.

37

4.1.2. Few groups

Another case that can be efficiently solved is when |G| ≤ 8. The idea is to assign a unique
index from 0 to 7 to each group and then make the lower nibble lookup set the bits at indices
of groups for which they are part of the acceptance set.

More precisely, we take an arbitrary ordering ⟨u1, l1⟩, . . . , ⟨u|G|, l|G|⟩. We construct the
utab such that utab[x] = 28 − 1 − 2i−1 if x ∈ ui, and utab[x] = 0 otherwise. Then the lower
table is defined as:

ltab[x] = 2i1−1 + 2i2−1 + . . .+ 2ic−1, where x ∈ li1 , x ∈ li2 , . . . , x ∈ lic

It should be clear from this that if we take a byte b = ⟨u, l⟩ such that f(b) = 1 then the
bitwise OR of utab[u] and ltab[l] is 28 − 1. Indeed, there must be a group ⟨ui, li⟩ such that
u ∈ ui and l ∈ li, and then utab[u] = 28 − 1− 2i−1. Then ltab[l] must have the bit i− 1 lit by
definition. For an example of this, see Figure 4.2.

The classification vector b is obtained with just one more operation than in the non-
overlapping case:

let upper_source = srli_epi8(source, 4);
let ltab_lookup = shuffle_epi8(ltab, source);
let utab_lookup = shuffle_epi8(utab, upper_source);
let lookup = or(ltab_lookup, utab_lookup);
let b = cmpeq_epi8(lookup, ALL_ONES);

This increases the expected time to five CPU cycles.

4.1.3. General case

Unfortunately, we have not found an elegant solution to the general case for 8 < |G| ≤ 16. A
working approach is to apply the algorithm for the small case twice. First partition the set G
into G1, G2 such that |G1| ≤ 8 and |G2| ≤ 8. Then classify the bytes according to G1 and G2,
possibly with local parallelism. In the end, we take the OR of both classifications to obtain
a classification for G.

let upper_source = srli_epi8(source, 4);
let ltab1_lookup = shuffle_epi8(ltab1, source);
let utab1_lookup = shuffle_epi8(utab1, upper_source);
let lookup1 = or(ltab1_lookup, utab1_lookup);
let ltab2_lookup = shuffle_epi8(ltab2, source);
let utab2_lookup = shuffle_epi8(utab2, upper_source);
let lookup2 = or(ltab2_lookup, utab2_lookup);
let final_lookup = or(lookup1, lookup2);
let b = cmpeq_epi8(final_lookup, ALL_ONES);

Assuming maximal local parallelism this takes six CPU cycles, since the two lookups are
independent.

4.2. Handling escapes

The next step is ignoring characters recognised as structural by the lookup, but located
inside JSON strings. To that end, we mark all double quote characters with a simple cmpeq.

38

" \ |{ [}]:

0x22 0x5c 0x7c0x7b 0x7d 0x3a 0x5b 0x5d

11111011 00000000 11111110 11111110 11111011 11111101 11111011 11111011

00000100 00000000 00000101 00000100 00000100 00000010 00000101 00000101

11111111 00000000 11111111 11111110 11111111 11111111 11111111 1111111111111111 11111111 11111111

ltab

utab0x02 0x05 0x070x07 0x07 0x03 0x05 0x05
srli

or ALL_ONES

11111111 00000000 11111111 00000000 11111111 11111111 11111111 1111111111111111 11111111 11111111
cmpeq

shuffle

shuffle

Figure 4.2: Classifying the bytes 0x3a, 0x5b, 0x5c, 0x5d, 0x7b, 0x7d, which have overlapping
groups ⟨{5}, {b, c, d}⟩, ⟨{7}, {b, d}⟩.

However, we need to also account for escape sequences. Recall that a double quote character
is escaped if and only if it is preceded by a sequence of backslashes of odd length.

We use the same solution as simdjson [LL19]. First, mark all backslash and quote char-
acters with a cmpeq. Now we move out of the SIMD world and obtain two masks in regular
registers, quotes and slashes. The key idea now is that we can mark starts of backslash
sequences and use add-carry propagation to find their ends. To find starts, we ask for back-
slashes not preceded by other backslashes, which is slashes AND NOT (slashes << 1). We
partition the starts between those occurring at odd positions in the vector and those occurring
at even positions using a constant mask3.

Then we arithmetically add slashes to each of these masks. The starting bit triggers a
carry, which continues through the sequence of consecutive backslashes. The result is a single
lit bit one place past the end of the sequence. We can now partition ends based on their
positions as well. Escaped characters will be the ends of starts on even positions that occur
at odd positions, and ends of starts on odd positions that occur at even positions. It remains
to exclude those escaped characters from quotes.

4.2.1. Block boundaries

There is an issue with the above algorithm stemming from the nature of block-by-block
processing. If the boundary between two blocks falls in the middle of a sequence of backslashes,
then we might get incorrect results. Consider a label "x\\". If the block boundary happens
to be between the backslashes so that the first backslash is at the end of the first block and
the other at the start of the second block, then the quote they precede would be incorrectly
classified as escaped.

3A 64-bit mask for even positions is 0x5555555555555555, while for odd it is 0xAAAAAAAAAAAAAAAA.

39

{ "x{}[]:": 42, "x\"": 17, "x\\": 37, "x\\\\": "\\\"{}[]:\\\"" }

0000000000000000001000000000011000000000111100001110000001110000

0000000000000000001000000000010000000000100000001000000001000000

10

0000000000000000001000000000000000000000100000001000000000000000

0000000000000000000100000000011000000000000010000001000001110000

0000000000000000000100000000000000000000000010000001000000000000

0000000000000000000000000000010000000000000000000000000001000000

0000000000000000001000000000000100000000111100001110000000001000

0000000000000000000000000000000100000000000000000000000000001000

0000000000000000000100000000000000000000000000000001000000000000

001000

01

0000000000000000000100000000000000000000000000000001000000001000

ODD

B

Starts = B & !(B << 1)

input

EVEN

OStart = Start & ODD

OCarry = OStart + B

EOS = OCarry & !B

EEOS = EOS & EVEN

EStart = Start & EVEN

ECarry = EStart + B

EES = ECarry & !B

OEES = EES & ODD

escaped = EEOS | OOES

-------------------v-------------------------------v--------v---

Figure 4.3: Finding escaped characters in an input stream. The slashes vector is renamed as
B.

As described in Section 3.2, there are two ways of dealing with this – introducing pipeline
state, or switching to overlapping windows. Overlapping windows would significantly degrade
the classifier’s performance, so we choose to carry a state. In this case it is conceptually a
single bit of information – whether the previous block’s last character was a backslash and
not an end of a backslash sequence. This is then used in two places – if the first character
in a block is a backslash, but the bit is lit, then it is not a start of a sequence; and if the
first character is not a backslash, but the bit is lit, then it is an escaped character. We avoid
branching by converting the bit into a mask of length in bits equal to the block length in
bytes and combining it with the rest of the information using bitwise operations.

let starts = slashes & (!slashes << 1) & !prev_slash_mask;
...
let escaped = (ends_of_even_starts & ODD)

| (ends_of_odd_starts & EVEN)
| prev_slash_mask;

Figure 4.4: Applying the backslash mask from the previous block’s state to accurately compute
starts of escape sequences and escaped characters.

4.3. Recognising quoted sequences

Having recognised unescaped double quote characters we now want to exclude all structural
characters that are quoted. We use a solution from [LL19], utilising the clmul instruction
described in Section 2.4.3. Observe that if we take the vector where bits are lit at unescaped
double quote characters, then a prefix-xor computed on it will mark with lit bits exactly those
characters that are quoted. Thus, it suffices to load the vector into a SIMD vector, perform
the clmul operation, and then extract the information back to a mask.

40

4.3.1. Block boundaries

The same issue as with backslashes also occurs for quotes. If the block boundary falls between
a pair of double quote characters, so that the opening double quote is in the first block while
the closing is in the second, then we will misclassify all bytes in the second block. The solution
is the same – we introduce a second bit of state that signifies whether the previous block ended
while still within quotes, which is equivalent to the last bit extracted from the result of clmul
being lit. We can efficiently store both bits of information in a single byte of storage.

4.4. Structural iterator

All the classification we have performed up to this point was on a single block of data. To
feed information to the main algorithm we need an abstraction on top of a block classifier
that will give us a classifier for the entire input stream.

We create a structure implementing the Iterator trait4, yielding items of an algebraic
sum type Structural with three variants:

• Closing – representing ’{’ or ’[’;

• Colon – representing ’:’;

• Opening – representing ’}’ or ’]’.

Additionally, each item stores the index at which the character occurred in the input.
The iterator operates on classified blocks of structural characters, which contain a bitmask

with all structural characters marked as described in the sections above, along with a reference
to the original input block. The iterator begins by classifying the first block of input. Then,
when asked for the next structural character, it examines the current classified block and its
bitmask. If it is all-zeroes, then there are no structural characters in the current block and
we need to classify the next one. If it is not, then we extract the position of the first lit bit
by calculating trailing zeroes of the mask and check the original input block for the character
located at that position. This allows us to create the Structural item that is returned.
Additionally, we modify the stored bitmask by zeroing the lit bit we just processed.

This provides the main implementation with a stream of the relevant structural elements,
while all other characters are efficiently skipped over. The SIMD pipeline calculating struc-
tural bitmasks is completely branchless, while the outer loop contains branching when we
compare the mask to zero, and then when we branch on the input character to return a
proper Structural value.

4.4.1. Performance

The data used in our classifier experiments is the wikidata-combined.json totalling 71.42
MB, which is also the principal dataset for our main benchmarks (see Chapter 6 for more
details), and a prettified version (154.19 MB). We benchmark the main classifier using AVX2
SIMD against a sequential implementation. The benchmark consumes the produced stream
of structural characters to avoid the compiler optimising work away. Effectively, we measure
exactly the time it takes to classify the input.

4Iterator models a stream of elements with a single function next returning the next element in the
stream, or stating that there are no more elements.

41

The SIMD classifier gives over three times speedup on compressed data, and almost five
times speedup on prettified JSON. The sequential classifier suffers on prettified data, since
it cannot simply skip all the whitespace characters like the SIMD implementation can. It is
important to note that the throughput values for this benchmark are a limit for the main
result as well – surely, a query engine doing work on the structural stream cannot be faster
than the stream itself.

Data Implementation Mean time (ms) Throughput (GB/s) Ratio
Compressed Sequential 109.24 0.6538 1.00
Compressed Main (AVX2 SIMD) 32.32 2.2096 0.30

Prettified Sequential 252.74 0.6101 1.00
Prettified Main (AVX2 SIMD) 48.82 3.1584 0.19

Table 4.1: Benchmark of the classifiers on compressed (71.42 MB) and prettified (154.19 MB)
datasets.

Figure 4.5: Throughput plot of Table 4.1

42

Chapter 5

Main query engine

The classifier is decoupled from the actual query engine, which allows us to measure the
impact that the query logic itself has on performance. Our main implementation, based on
[BMP21] tries to minimise branching, with the hypothesis being that such code should be
much more performant with a SIMD structural classifier. To compare it, we have a reference
implementation we call recursive, which is a run-of-the-mill engine based on mutually recursive
functions. We focus our description on the main implementation.

5.1. Stackless processing

A useful theoretical framework for SIMD parallelism was provided in [MPP16], called stream-
ing circuits. An algorithm that processes blocks of k-bits can be interpreted as a circuit over
the input size k with an additional constant-size state. There is a direct link between the
complexity of the circuit and effective parallelisation.

This gives motivation to construct algorithms that are effectively finite automata over the
input stream of structural characters. In particular, parsing the input JSON tree is a no-go
– such a parser would necessarily have to recognise the language of correct bracketings (the
Dyck language), which is known to be TC0-complete. For effective parallelisation we should
be aiming at AC0 circuits1. Since the Dyck language is in a sense complete for languages
recognised by pushdown automata2, it appears natural that using a stack for query processing
would severely limit parallelism.

Querying streaming trees in a stackless manner was examined in [BMP21]. The authors
characterise the kinds of queries that can be effectively executed on register automata, which
are finite automata with a constant number of depth registers and access to the current
depth in the tree. The only operations allowed on registers are storing the current depth and
comparing whether the stored value is less than, equal to, or greater than the current depth.
It is easy to see that such automata can be effectively implemented, as the current depth
can be tracked in a single integer variable that is incremented on every occurrence of the
Opening structural character and decremented on every occurrence of the Closing structural
character.

Unfortunately, it was proven that in general queries mixing descendant and child selectors
cannot be implemented without the stack. Intuitively, the algorithm would have to remember
every occurrence of the label that is recursively searched for to check its children. We first

1For a more in-depth analysis of the relation between SIMD and circuits consult Appendix B.
2It is easy to prove that every context-free language is a homomorphic image of Dyck.

43

consider queries with descendant selectors only, which can be effectively implemented, and
then generalise to mixed selectors with what we call a small stack model.

5.2. Query automata

A query can be represented as a nondeterministic finite automaton running on a word com-
prised of the sequence of labels on a path from root to a node in the tree. Executing a query
then boils down to simulating the runs of this automaton on all paths in the tree.

A pass over the stream of structural characters gives us enough information to simulate
a deterministic automaton, as long as we use a stack – whenever an Opening character is
encountered the state of the automaton is preserved on the stack, while each label triggers a
transition; a Closing character pops the stack and restores the state to what it was before
visiting the subtree. Theoretically, since the query gives us an NFA, the size of a DFA
obtained from it could be exponential. However, if we examine the specific structure NFAs
for our JSONPath queries have, it turns out that we can have an effective algorithm for finding
a minimal deterministic automaton of the same size as the original NFA.

5.2.1. Descendant-only automaton

Figure 5.1: NFA accepting paths matching the query $..x..y..x..z.

For now, consider queries with descendant selectors only, as they can be implemented without
using the stack at all. Let us consider a query $..label1..label2labeln. In plain English,
this query asks for a labeln node that is located in a subtree of a labeln−1 node that is located
in a subtree, et cetera, ultimately located in a subtree of a label1 node.

An NFA for such a query has a very regular form, as illustrated in Figure 5.1. There
is a natural ordering of the states of the automaton based on the order of selectors in the
JSONPath query. Assume the order is q1, . . . , qn+1. Consider a DFA constructed from the
NFA with the standard powerset construction. Then it is obvious that any state Q in the DFA
is equivalent to {maxQ}. Therefore, the state of the DFA can be unambiguously represented
with a single number from 1 to n+ 1.

A stackless algorithm for this query uses n depth registers δ1, . . . , δn−1. We start in state
1 and accept in n+ 1. When in state i, there are two transitions that can be taken:

• if current depth falls to δi−1, transition to i (not applicable to i = 1);

• if labeli is found, set δi to current depth and transition to i + 1 (not applicable to
i = n+ 1).

Correctness follows from a simple inductive argument.
Note that we crucially rely on node semantics of the query (defined in Section 1.2.1) – the

key property is that once we enter a subtree of labeli we can ignore further nested labeli
nodes, simply because any deeper subtree of labeli will be contained within the shallower

44

subtree we encountered first. In path semantics (defined in Section 1.2.2) we would have to
consider every such nested subtree individually, as they would provide different markings for
the resulting path.

When looking at a query as an automaton, node semantics corresponds to us asking “is
this path accepted”, while path semantics would ask “how many different accepting runs this
path induces”. Only the former allows us to effectively determinise and minimise the NFA.

5.2.2. Allowing child selectors

Figure 5.2: NFA accepting paths matching the query $..x..a.b.a.b.c..y.a. Segments
coloured in different shades of grey become separate strongly connected components after
minimisation.

Child selectors cause the automaton to effectively have two types of states – recursive, which
correspond to descendant selectors in the query, and direct, which correspond to the child
selectors. Again, we have a natural ordering on the states. The intuition about nested
subtrees from the descendant-only case applies here in a more generalised fashion – once
we reach a given recursive state, we can forget about all states before it. This divides the
automaton into segments, where only one segment needs to be simulated at a time.

Moreover, minimisation of such an automaton causes no explosion of states – only trans-
itions become more complicated. Every segment is translated to a strongly connected com-
ponent in a minimised DFA. Crucially, this again allows us to represent the state as a single
number from 1 to n+ 1 for a query of n child and descendant selectors.

Lemma 5.1. For any query of n selectors the minimal DFA has exactly n+1 states and can
be constructed in O(n2).

Proof (sketch). We proceed by induction on the number of descendant selectors in the query.
If there are none then the claim is trivial, since clearly an NFA for such a query is already
deterministic and minimal.

Assume the state i is the last recursive state (corresponding to the last descendant se-
lector). Consider the DFA obtained with a standard powerset construction on the original
NFA. It is clear that for any set of states Q where ∀q∈Q q ≤ i is equivalent to {i}. Take the
unique word of length n − i that is accepted from i, a1a2 . . . an−i. By simple induction on
its length we can show that the minimal DFA for the segment consisting of states i through
n+1 will have n− i+1 states corresponding to {i}, ∆({i}, a1), ∆(∆({i}, a1), a2), etc, where

∆(Q, a) = {p | q ∈ Q, ⟨q, a, p⟩ ∈ δ}

45

We conclude by saying that the DFA for states 1 through i− 1 can be linked with the one for
i through n+ 1 to obtain a minimal DFA for the whole query.

We note that the running time in Lemma 5.1 can be improved to O(n), since in essence the
automaton represents the control table from the preprocessing step of the KMP algorithm,
which can be constructed in linear time. This is irrelevant for our engine, as all real-life queries
compile very fast, and we feel like the construction from our proof gives better insight into
the nature of the query automata.

Figure 5.3: Automaton from Figure 5.2 after minimisation, clearly separated into three
strongly connected components.

5.3. Small stack model

As noted before, it is impossible to run a query containing both descendant and child selectors
in memory independent of the input document [BMP21]. Intuitively, this is due to the non-
local nature of such a query – two children of the same node can be arbitrarily far away from
each other in the input JSON string. In our approach, we try to get the best of both worlds
by employing a small stack.

The stack alphabet consists of pairs of depth and state, called stack frames. The stack
is small, in the sense that it only records when the simulated automaton’s state changes –

46

all other information is redundant. It is easy to see that for a descendant-only query with n
labels this will result in O(n) memory usage, and the at most n elements on the stack will
correspond directly to the n registers of a register automaton.

For a query with child selectors the stack can grow up to the depth of the JSON tree. For
most real-life data this is rare – it requires documents where nodes with the same label are
nested in itself, and the query asks for a child of a node with such a label.

Implementation-wise, a special Rust structure is used – SmallVec. This puts our small
stack on the actual stack of the executing thread as long as it is relatively shallow (up to 256
bytes). In the rare cases where it grows larger than that it is moved to the heap.

5.4. Full algorithm

The full algorithm has two phases. First, the query automaton is constructed and minimised.
Then it is simulated in the small stack model on the stream of structural characters obtained
from the classifier.

5.4.1. Automaton construction

The construction of a query NFA is straightforward, child selectors are translated into a direct
state with one outgoing transition, while descendant selectors are translated into a recursive
state, with an outgoing transition and a catch-all loop.

We then minimise the automaton step by step, constructing transition tables for each
state. They will contain a number of transitions taken when a specific label is matched, and
a single fallback transition taken when none of the labels matched. Then for every segment
we simulate the NFA with a powerset construction. Starting with a set containing the initial
recursive state, all possible transitions are examined to see how the states change, and an
appropriate transition is created. We then follow the “forward” transition to the next set of
states.

In the end, we will have transition tables constructed between sets of states from the
original NFA. It remains to map every such set to a unique integer, creating the final minimised
DFA.

5.4.2. Execution

We keep the current state, depth, and the small stack while iterating over the stream of
structural characters and simulating the minimised DFA.

• If the character is Closing, depth decreases and we examine the stack. If the top stack
frame’s depth is equal to the new depth, then the frame is popped and we transition to
the state from the frame.

• If the character is Colon, we peek ahead in the stream, and then consider every transition
from the current state. There are two cases:

– the peeked character is Opening – we check if the label matches, and transition to
the target state if it does, effectively recursing into the subtree; if the target is the
accepting state, a match is reported;

– the peeked character is something else – we check the label only if the transition
target is the accepting state, and if that matches, we report a query match; there
is no subtree to recurse into in this case.

47

• If the character is Opening, depth increases. If we have not followed any transition in
the preceding colon, we follow the fallback transition; otherwise, we do nothing, since a
transition was already triggered when we examined the label.

Additionally, every time we follow a transition to a different state we remember it on the stack
by recording the depth and the state from which the transition was triggered.

Checking whether a label matches is done in the traditional manner – we compare the
bytes in the input of expected length to the label. Additionally, we need to make sure that
the label is enclosed in double quotes and that the opening double quote is not escaped. It
is important to note that in a valid JSON document the colon structural character is not
necessarily immediately preceded by the closing double quote of a label – there might be
whitespace characters in between. In the worst case, we would have to backtrack from the
colon through all the whitespace to the closing quote. However, finding real-world data with
such pathological formatting is near impossible. The case is handled, but assuming sensibly
formatted input will never be hit and will not impose a performance penalty.

5.5. Performance

We benchmark four solutions. There are two classifier implementations, SIMD and no SIMD,
as well as two engine implementations: recursive, serving as the baseline, and main, based on
a small stack.

The results are largely indicative of our intuitions. SIMD classifier provides large gains for
both solutions, but the small stack model benefits more due to limited branching. Prettified
documents benefit even more from SIMD processing, achieving performance closer to the
classifier’s.

The benchmark measures time that it takes for the engine to report all matches – the
time to load the dataset into memory and compile the query is not measured. We note that
query compilation times are negligible, in the order of a few microseconds. Only the count
of matches is reported – this makes sure we measure only the main loop of the engine itself,
without the noise that would be introduced from gathering large result sets in memory or
reporting them to standard output.

Figure 5.4: Throughput plot of Table 5.1.

48

Dataset Implementation Mean time (ms) Throughput (GB/s) Ratio
combined Recursive, no SIMD 141.09 0.5062 1.00
combined Main, no SIMD 181.51 0.3935 1.29
combined Recursive 62.38 1.1449 0.44
combined Main 47.83 1.4932 0.34

prettified Recursive, no SIMD 289.69 0.5322 1.00
prettified Main, no SIMD 370.80 0.4158 1.28
prettified Recursive 77.58 1.9876 0.27
prettified Main 60.44 2.5511 0.21

Table 5.1: Query $..claims..references..hash executed on the main dataset. The number
of matches for this query is 57 117.

5.5.1. Analysis

Based on the data in Table 5.1, Table 5.2, and Table 5.3, as well as dataset characteristics
described in Section 6.1, we make the following observations.

• The main solution with SIMD vastly outperforms other implementations on all data.

• SIMD solutions’ performance is closely correlated with label density in the document.
Indeed, largest throughput is obtained on the prettified dataset, with lowest label
density, while the lowest throughput is on the densest dataset, professions. This is
best visualised in Figure 5.5. This corresponds to our intuitions, as our label comparisons
are strictly sequential and bound to take the bulk of processing time, as well as inhibit
SIMD pipelining.

• Unsurprisingly, prettified datasets benefit most from SIMD processing, due to the ability
to skip all irrelevant whitespace quickly.

• There do not appear to be large differences between execution times of queries with
descendant selectors versus queries with child selectors. Small difference visible in Fig-
ure 5.6 can be explained by the difference in number of results and measurement noise.

Figure 5.5: Throughput plot of Table 5.2.

49

5.5.2. Existing implementations

Lack of comparison with other existing implementations might be worrying at first. As shown
in Appendix C, only a few implementations have the correct semantics. Out of those only
two are sensible competitiors – json-glib, written in C, and jsurfer, written in Java3. The
glib version is not a good comparison, because it builds the DOM, putting it at an immediate
disadvantage. We note that a rough benchmark on the combined dataset puts its throughput
at around 30 MB/s, orders of magnitude slower than rsonpath. Even when allowed to parse
the DOM outside of measurements and tested only for the time it takes to execute the query
on a tree in memory, the throughput reaches upwards of 220 MB/s4.

The jsurfer is a valid target for comparison. However, we were unable to produce a
reliable benchmark environment that could run both Rust and Java code in due time. We
note only that a rough benchmark shows the Java solution to achieve a throughput of around
200MB/s5.

These are much less rigorous benchmark than our other experiments, therefore we do
not make sweeping statements based on it. It is clear, however, that our main solution is
significantly faster.

Dataset Implementation Mean time (ms) Throughput (GB/s) Ratio
person Recursive, no SIMD 38.857 0.5134 1.00
person Main, no SIMD 48.151 0.3930 1.31
person Recursive 17.840 1.0606 0.48
person Main 12.940 1.4622 0.35

profession Recursive, no SIMD 68.103 0.4890 1.00
profession Main, no SIMD 87.256 0.3817 1.28
profession Recursive 30.922 1.0770 0.45
profession Main 23.860 1.3957 0.35

properties Recursive, no SIMD 37.109 0.5173 1.00
properties Main, no SIMD 47.901 0.4007 1.29
properties Recursive 15.857 1.2105 0.43
properties Main 12.318 1.5583 0.33

Table 5.2: Execution results on individual datasets constituting combined, all of them com-
pressed. For person and profession the query is $..claims..references..hash, while
for properties it is $..qualifiers..datavalue..id. Number of results in each dataset is
37 736, 14 142, and 18 219, respectively.

3The bash and PHP versions are extremely slow, and Scala’s jsonpath appears to be abandoned.
4Measured on the Lille chifflot cluster on the combined dataset with the same query as our solutions. Our

code parses the tree and compiles the query outside of measurement. The benchmark measures the execution
time of the json_path_match method by running it 100 times and taking the execution time divided by 100
as the sample.

5Measured on the Lille chifflot cluster on the combined dataset with the same query as our solutions.
Our code compiles the query and configures a listener that increments a result count integer variable. The
benchmark measures the execution time of the surf method by running it 100 times and taking the execution
time divided by 100 as the sample.

50

Figure 5.6: Plot of difference in throughput between the recursive and direct queries from
Table 5.3. The recursive query performs negligibly worse, although the difference is statistic-
ally insignificant in all cases.

Query Implementation Mean (ms) Throughput (GB/s) Ratio
$..en..value Recursive, no SIMD 36.071 0.5246 1.00
$..en..value Main, no SIMD 46.966 0.4029 1.30
$..en..value Recursive 16.209 1.1673 0.45
$..en..value Main 12.245 1.5452 0.34

$..en.value Recursive, no SIMD 36.039 0.5250 1.00
$..en.value Main, no SIMD 47.091 1.1650 1.31
$..en.value Recursive 16.241 0.4018 0.45
$..en.value Main 12.310 1.5371 0.34

Table 5.3: Two queries differing in selector choice executed on the person dataset. The
number of matches for the recursive query is 2 360, while for the direct-child query it is 1 753.

51

Chapter 6

Benchmark methodology

All benchmarks shown in this paper are performed on a stable server environment, using
Rust Criterion [Hei17] as the benchmarking harness, on publicly available JSON documents
describing Wikipedia pages.

6.1. Datasets

We used the open-source database dumps of Wikidata in a JSON format [Wik22]. The three
core datasets are person, profession, and properties, which are subdocuments of the main
JSON dump. These three documents were combined into a single large document, which
provides the main benchmark – combined.

The datasets come in two types – compressed and prettified. Compressed are the JSON
documents with all meaningless whitespace characters removed, resulting in a single line of
condensed characters. Prettified data is the opposite, being multiline and indented with four
spaces per level to be human-readable. These represent the two common formats in which
JSON data is generally stored and passed around. We focus on compressed data, as it is the
harder task for our engine, thus we consider only one non-compressed prettified, which is
structurally the same as combined.

Relevant characteristics of the datasets can be found in Table 6.1.

Dataset Size (MB) Labels Labels/MB Max depth Average depth
person 18.92 870 769 46 024 13 8.15
profession 33.30 1 574 975 47 297 13 6.35
properties 19.19 822 899 42 882 13 7.23
combined 71.42 3 268 644 45 766 15 9.05
prettified 154.19 3 268 644 21 199 15 9.05

Table 6.1: Metadata of utilised datasets. Note that the data in wikidata_combined is ar-
tificially nested within a root object with a single member, whose value is a list containing
the three nested documents. Therefore, it contains one more label than the sum of the three
nested documents, and an max and average depth inflated by 2.

53

6.2. Machines

Our benchmark results are ran on Grid 5000 [Bol+06] – a French nation-wide grid of compute
platforms for experiment-driven research in computer science. The hardware available in the
grid is listed in [Gro18]. For all our benches we used the chifflot cluster in the Lille site, whose
specification is listed in Table 6.2. The site was chosen due to its CPUs built on Skylake,
which is the first architecture with AVX512 support, and high single-core performance.

Category Description
Kernel Linux 5.10.0-15-amd64 x86_64
Architecture x86_64, Skylake
CPUs 2× Intel Xeon Gold 6126, 12 cores, 24 threads 2.6 GHz (3.7 GHz Boost)
RAM 192 GiB
Rust 1.61.0 stable

Table 6.2: Specification of Lille chifflot cluster machines.

6.3. Tooling

We use the Criterion Rust benchmark framework, based on a framework by the same name for
Haskell. Criterion handles the harness code and performs statistical analysis on the results.

A benchmark is executed as follows. First, a warm-up phase is performed, making sure that
the low-level caches are filled for the actual measurements. Measurements are performed on a
number of samples, each of which consists of many iterations of the benchmarked routine. The
mean execution time of all iterations is taken as a single sample. Finally, collected samples
are analysed to find the statistical distribution, outliers are detected, and a mean time is
reported.

The mean time of execution and throughput calculated based on that are generally the
most important statistics. Note that our methodology specifically and deliberately targets
bandwidth only – latency is not an issue for this paper.

6.4. Reproducibility

The benchmark code and all data sets are available as part of the project’s GitHub repository
[Gie22b]. Up-to-date information on executing the benchmarks is also available. Benchmarks
for results given in Chapter 3 are located in a separate package, simd-benchmarks. Bench-
marks for main results – the classifier and the engine – are in the main rsonpath package.

54

Summary

We have presented a working JSONPath query engine for a subset of available query select-
ors based on a SIMD structural classifier, as well as a theoretical framework based on finite
automata for designing JSONPath query execution engines. Our novel small stack model
allows us to efficiently execute such automata with minimal branching and stack usage, al-
lowing more efficient SIMD pipelining. The general algorithm for constructing SIMD lookup
tables presented in Section 4.1 is of potential use for designing similar vectorised classifiers
for different domains.

The solution is open-sourced and is not a mere prototype – it is well-engineered and ready
for extensions. The benchmark harness we have constructed should allow us to further improve
the performance of the engine and extend it with new selectors, with relevant experiments to
back that up.

There is much room for extension in rsonpath. Firstly, we would like to support more
selectors. Wildcard selectors, matching any label, appear to be a straightforward addition.
Accessing elements of lists at given indices should also be simple. A hard problem to crack
are filters, which add non-locality to the queries, making them impossible to simulate in a
linear pass through a stream. One would need a theoretical classification of feasible filtering
queries that could be integrated into the engine.

We were unable to provide rigorous benchmarks against other existing JSONPath query
engines. It is clear from preliminary runs that our main implementation is faster, but one
would need to integrate solutions in potentially wildly different programming languages into
our benchmark harness to produce reliable results. We believe this to be the only missing
piece between turning this thesis into a publication at a systems conference.

Finally, the related circuit complexity conjecture described in Appendix B remains an open
problem. Solving it would shed light on the nature of SIMD parallelisation and characterise
the gap between AC0 and TC0 circuit classes.

55

Appendix A

aligners crate

Keeping alignment of bytes that our SIMD algorithms run on is crucial, as described in
Section 2.5. Unfortunately, aligned and misaligned byte slices are indistinguishable during
static analysis. There is no syntactical tool to assert that a slice is aligned, there is no check
that would make sure that taking a subslice does not break alignment.

This is especially frustrating when decoupling modules – there is no way to express syn-
tactically that a given public function accepts only aligned bytes. Moreover, there is no
cross-platform way of checking whether a pointer is aligned to a k-byte boundary. A naive
way of casting the pointer to an integer and checking its remainder modulo k might work
on most conventional architectures, but there is no guarantee on that. The Rust standard
library exposes a function checking alignment of a pointer, pointer::align_offset, but it
is explicitly stated that one cannot depend on its output for correctness, as it can return a
sentinel “unknown” value if it cannot check the alignment [Rus19].

To solve this problem we devised a library of types to control alignment statically. This
crate is available on the Rust community library repository, crates.io [Gie22a]. Such crates
existed before in the Rust ecosystem, but they were unsatisfactory for our purposes. We
assume basic knowledge of the Rust programming language in the following description.

A.1. Supported alignments

The information about alignment is provided by implementers of the Alignment trait. It has
a very short definition:

pub unsafe trait Alignment {
fn size() -> usize;

}

It is unsafe, because the size function must satisfy two invariants:

1. its return value must be a power of 2;

2. it must be pure, i.e. its result must always be the same every time it is called.

Condition 1. is required to make alignment sound – heap allocators do not support non-
power-of-two alignments. Condition 2. must be upheld for the guarantee to make sense –
“this pointer is aligned to A::size()” would not be well-defined if A::size() could return
different values between calls.

The crate provides four alignment types supported out-of-the-box:

57

• TwoTo<const N: u32> – alignment to 2N . This type can obviously cover all valid align-
ments under the conditions mentioned above.

• SimdBlock – guaranteed to be the alignment of a single SIMD block under the target
architecture, decided at compile time. For example, for AVX2 this is 32-byte alignment,
while for AVX512 it is 64-byte.

• TwoSimdBlocks – guaranteed to be exactly twice the alignment of SimdBlock. This is
useful for processing blocks in pairs, either to implement overlapping windows, or to
make algorithms more efficient, for example by performing operations on two AVX2
vectors and packing them into a single u64 instead of two u32s.

• Page – alignment to the OS memory page size, for better cache performance.

For purposes of this paper, Page alignment is useful to align the entire input on page boundary,
while SimdBlock and TwoSimdBlocks are essential for statically enforcing that calls to SIMD
load instructions are sound.

As syntactic sugar some aliases are defined, like Eight and SixtyFour equivalent to
TwoTo<3> and TwoTo<6>, respectively.

A.2. Asserting alignment on a type level

The core type provided by the crate is AlignedBytes<A: Alignment>, which is a heap-
allocated byte array guaranteed to be aligned w.r.t. A.

Taking a reference to the bytes gives a &AlignedSlice<A> (or &mut AlignedSlice<A>),
which can be treated the same as &[u8] (or &mut [u8]) thanks to Rust’s Deref trait (or
DerefMut). Most importantly, one can flow the alignment information through the type
system in two ways.

1. Using offset(&self, count: isize), which returns the slice offset by count blocks of
size A::size(). The result is still aligned, so the result preserves this information.

2. Using iter_blocks(&self), which returns an iterator over blocks of size A::size() of
the bytes. Each of these blocks is naturally guaranteed to be aligned.

This allows algorithms to effectively run on a reference to AlignedSlice<A> by only ever
considering aligned blocks of the input. For example, the algorithm shown on Figure 2.1 can
now be safely implemented by taking in &AlignedSlice<Eight> and iterating over blocks of
8 bytes (see Figure A.1).

A.3. Comparison to existing solutions

Crates related to memory alignment already exist, but none of them were satisfactory for us.
By far the most popular crate for memory alignment, still actively maintained, is aligned.

It provides a thin wrapper over any type and forces it to be aligned to the specified boundary.
However, it provides only a handful of alignments (2, 4, 8, 16, 32, 64), and it has no facilities
for safe slicing of aligned bytes or iterating through aligned blocks. Therefore, it does not
allow us to express the contract of a function using SIMD requiring an aligned pointer to a
block of k bytes, so it would be useless for us.

Other crates like aligned-array, align-data or maligned are either also lacklustre in
their features, or no longer maintained.

58

fn simd_align(a: &AlignedSlice<Eight>, b: &AlignedSlice<Eight>) {
const SIZE = 8;
let a_blocks = a.iter_blocks();
let b_blocks = b.iter_blocks();
for (i, (a, b)) in a_blocks.zip(b_blocks).enumerate() {

let a_vec: u64 = a.as_u64();
let b_vec: u64 = b.as_u64();
let xor = a_vec ^ b_vec;
if xor != 0 {

let idx = i * SIZE + (xor.trailing_zeros() / SIZE);
return Some(idx);

}
}
return None;

}

Figure A.1: Vectorised algorithm from Figure 2.1, but guaranteeing the assumptions described
in Section 2.5 statically at compile time.

59

Appendix B

Circuit lower bound for Dyck

As introduced in [MPP16], an algorithm that processes blocks of n-bits can be interpreted
as a circuit over the input size n with an additional constant-size state – a streaming circuit.
There is a direct link between the complexity of the circuit and effective parallelisation. To
justify our approach of circumventing parsing, we would want to show that the fundamental
problem of matching bracket pairs is not achievable with simple circuits. It is natural that
any parser for JSON, or indeed any tree-shaped data format, needs to contain a solution to
this problem. Formally, we are trying to recognise the language of correct bracketings, called
the Dyck language.

The Dyck language is known to be complete for the class TC0 of polynomial-size, constant
depth circuits with unbounded fan-in, equipped with majority (or equivalently threshold)
gates [MC89]. It is clear that SIMD programs contain TC0-complete operations, for example
one can count the number of lit bits, which is clearly stronger than majority. This separates
them from AC0, as majority is not in AC0 (by virtue of parity not being in AC0). However,
SIMD programs are limited by their length. Ideally, to model SIMD parallelism we want
programs of constant lengths that use building blocks working on vectors of some size n. In
other words, we want circuits of constant depth and a constant number of special operations
that require involved instructions.

We conjecture that recognising the Dyck language cannot be expressed in a constant-
size SIMD program – intuitively, it appears that a solution to Dyck must utilise linearly
many majority gates. On the other hand, it is clear that SIMD programs are stronger than
AC0 circuits, as operations like counting the number of lit bits are also TC0-complete. The
nuance here is that SIMD programs cannot perform a non-constant number of such operations,
so while they exceed the expressiveness of AC0 it is unlikely that they fully capture TC0.
Even though SIMD programs might be TC0-complete with respect to AC0 reductions, this
is irrelevant for practical purposes, as such reductions could blow-up the number of used
operations from constant to polynomial. It remains an open question what class of circuits
would capture all of SIMD operations. As a stepping stone between AC0 and TC0 we consider
a class AC0[MajO(1)].

B.1. Classes with a bounded number of special gates

Consider any class of circuit families C. Let G be any logic gate. For k ∈ N we denote as
C[Gk] the class of all circuit families that follow the restrictions of the class C except that each
circuit can also use at most k gates of type G of unbounded fan-in.

Additionally, for any function f : N → N we define C[Gf(n)] to be the class of circuit

61

families from C, such that each circuit Cn for inputs of size n can use at most f(n) gates
of type G of unbounded fan-in. As an additional shorthand define C[GO(f(n))] as the class⋃

c∈N C[Gc·f(n)].

B.2. Dyck, Prefix-Dyck

The Dyck language represents correct bracketings, which is a prefix property, i.e. a word is
a correct bracketing if and only if all of its prefixes contain no more closing brackets than
matching opening brackets. A natural valuation for a word is the difference between opening
and closing bracket characters in it. We want that difference to be non-negative in all proper
prefixes, and to be zero for the entire word. This is formalised below. Consider words over
the alphabet Σ = [1..k] ∪ [1̄..k̄]. A circuit with inputs over this alphabet can be modelled
as receiving the characteristic function for each input character and each alphabet letter. In
other words, every character is represented as |Σ| bits, out of which exactly one is lit.

Definition B.1 (prefix Dyck value). For all words we define its prefix Dyck value for 1 ≤
i ≤ k, pdyck i : Σ∗ → N, as:

pdyck i(w) = #i(w)−#ī(w).

Definition B.2 (PDyckk language). The language PDyckk (Prefix-Dyck) is defined induct-
ively as:

PDyckk = {ϵ} ∪ {wa |w ∈ PDyckk, a ∈ Σ, ∀1≤i≤k pdyck i(wa) ≥ 0}.

Definition B.3 (Dyckk language). The Dyckk language is a subset of PDyckk:

{w ∈ PDyckk | ∀1≤i≤k pdycki(w) = 0}.

When we go through a JSON document we are actually interested in computing pdyck2
for every input prefix. This is due to the nature of the streaming setting – we need to have
this information for the portion of data we have read, and then we receive another block and
process it using that information. It is obvious that if we could compute pdyckk for each
prefix then we would also be able to decide PDyckk. It is also obvious that pdyckk+1 is harder
to compute than pdyckk. Moreover, PDyckk is at least as hard as Dyckk, by the following
lemma.

Lemma B.1. Recognising Dyckk reduces to recognising PDyckk with an NC0[Maj 2k] conver-
sion.

Proof. Having a circuit that recognises PDyckk for input of any length, it remains to connect,
for all i ∈ [1..k], all inputs representing i to a majority gate, its negated (with negation defined
as λi.̄i) inputs to another one, and assert that neither has the majority.

B.3. Neutral letters

This notion corresponds more closely to our JSON query problem. When we want to match
brackets in a JSON we do not get a pure stream of the structural brackets only, we are working
on the entire document containing labels, values, colons, commas, etc., which are irrelevant to
the bracketing problem. This means that we want to compute a variation of PDyck2, where
we collapse all irrelevant characters to a special e symbol that does not influence membership
to the language in any way. We formalise this idea.

62

Definition B.4. Any language L over an alphabet Σ can be extended with a neutral letter e
into a language neut(L, e) over Σ ∪ {e}, with the following transformation:

neut(L, e) = {e∗a1e∗a2e∗ . . . e∗ane∗ | a1a2 . . . an ∈ L}

In conclusion, for JSON querying we are interested in computing neut(PDyck2, e). It is
trivial to see that Lemma B.1 extends to a reduction of neut(Dyckk, e) to neut(PDyckk, e).

B.4. Open conjectures

The following conjecture is the end goal of our investigation into circuit complexity of Dyckk:

Conjecture B.1. AC0[MajO(1)] cannot recognise neut(Dyck1, e).

This would in some sense prove that there does not exist an efficient SIMD-parallel al-
gorithm for computing Dyck1, which would justify why an efficient parser/query engine im-
plementation for JSON cannot simply attempt to match the structural brackets.

A weaker version of this conjecture is also an open problem.

Conjecture B.2. A circuit in AC0[Maj 1] of depth 2 cannot recognise neut(Dyck1, e).

We note that this is a very regular setting – all circuits here correspond to a majority of
disjunctions, i.e. we take an OR of a number of inputs or their negations, and test whether
the majority of such clauses are satisfied. Even this separation, however, remains elusive.

In the end, we believe that Dyck1 itself is inexpressible in AC0[Maj 1], which would trivially
imply both of the above conjectures. However, proving separation for neut(Dyck1, e) should
be easier than for Dyck1.

63

Appendix C

JSONPath implementations – node
and path semantics

Using the json-path-comparison project [Bur+19] we ran a comparison of existing imple-
mentations of JSONPath w.r.t. node and path semantics, as described in Section 1.2. We
used the example JSON from that section, with values shortened for brevity:

{
"person": {

"name": "A",
"thesis": {

"name": "B",
"advisors": [

{
"person": {

"name": "C"
}

},
{

"person": {
"name": "D"

}
}

]
}

}
}

The query tested is $..person..name, which witnesses the difference between the semantics
(see Figure 1.2 and Figure 1.3). Ignoring ordering, the expected results are:

• ["A", "B", "C", "D"], for node semantics; or

• ["A", "B", "C", "D", "C", "D"], for path semantics.

The experiment is exactly reproducible – put the JSON document into a source.json file
and execute, from the root of json-path-comparison:

cat source.json | ./src/with_docker.sh ./src/one_off.sh '$..person..name';

65

Implementation Output Classification
Bash JSONPath.sh ["A", "B", "C", "D"] node
C json-glib ["A", "B", "C", "D"] node
Clojure json-path ["A", "B", "C", "D", "C", "D"] path
C++ jsoncons ["A", "B", "C", "D", "C", "D"] path
Dart json_path ["A", "B", "C", "D", "C", "D"] path
Elixir ExJsonPath ["A", "B", "C", "D", "C", "D"] path
Elixir jaxon ["A"] error
Elixir warpath ["A", "B", "C", "D", "C", "D"] path
Erlang ejsonpath ["A", "B", "C", "D", "C", "D"] path
Go PaesslerAG/jsonpath ["A", "B", "C", "D", "C", "D"] path
Go jsonslice [["A, B, C, D"], ["C"], ["D"]] path a

Go ojg ["C", "D", "C", "D", "A", "B"] path
Go oliveagle/jsonpath not supported error
Go ajson ["A", "C", "D", "B", "C", "D"] path
Go yaml-jsonpath ["A", "B", "C", "D", "C", "D"] path
Haskell jsonpath ["A", "B", "C", "D", "C", "D"] path
JavaScript Goessner ["A", "B", "C", "D", "C", "D"] path
JavaScript brunerd ["A", "B", "C", "D", "C", "D"] path
JavaScript jsonpath ["A", "B", "C", "D", "C", "D"] path
JavaScript jsonpath-plus ["A", "B", "C", "D", "C", "D"] path
Java jsurfer ["A", "B", "C", "D"] node
Java jsonpath ["A", "B", "C", "D", "C", "D"] path
Kotlin jsonpathkt ["A", "B", "C", "D", "C", "D"] path
Objective-C SMJJSONPath ["A", "B", "C", "D", "C", "D"] path
PHP Goessner ["A", "B", "C", "D", "C", "D"] path
PHP galbar/jsonpath ["A", "B", "C", "D"] node
PHP remorhaz/jsonpath ["A", "B", "C", "D"] node
PHP softcreatr/jsonpath ["A", "B", "C", "D", "C", "D"] path
Perl JSON-Path ["A", "B", "C", "D", "C", "D"] path
Python jsonpath ["A", "B", "C", "D", "C", "D"] path
Python jsonpath-ng ["A", "B", "C", "D", "C", "D"] path
Python jsonpath-rw ["A", "B", "C", "D", "C", "D"] path
Python jsonpath2 ["A", "B", "C", "D", "C", "D"] path
Raku JSON-Path ["C", "D"] error
Ruby jsonpath ["A", "B", "C", "D", "C", "D"] path
Rust jsonpath not supported error
Rust jsonpath_lib ["A", "B", "C", "D", "C", "D"] path
Rust jsonpath_plus ["A", "B", "C", "D", "C", "D"] path
Scala jsonpath ["A", "B", "C", "D"] node
Swift Sextant ["A", "B", "C", "D", "C", "D"] path
.NET Json.NET ["A", "B", "C", "D", "C", "D"] path
.NET JsonCons.JsonPath ["A", "B", "C", "D", "C", "D"] path
.NET JsonPath.Net ["A", "B", "C", "D", "C", "D"] path
.NET JsonPathLib ["A", "B", "C", "D", "C", "D"] path
.NET Manatee.Json ["A", "B", "C", "D", "C", "D"] path

Table C.1: Semantics chosen by known JSONPath implementations. Node semantics is high-
lighted in dark grey. Light grey indicates errors.

aDifferent output presentation, but clearly path semantics.
66

https://github.com/bashtools/JSONPath.sh
https://gitlab.gnome.org/GNOME/json-glib
https://github.com/gga/json-path
https://github.com/danielaparker/jsoncons
https://github.com/f3ath/jessie
https://github.com/ispirata/exjsonpath
https://github.com/boudra/jaxon
https://github.com/Cleidiano/warpath/
https://github.com/ostrovok-team/ejsonpath
https://github.com/PaesslerAG/jsonpath
https://github.com/bhmj/jsonslice
https://github.com/ohler55/ojg
https://github.com/oliveagle/jsonpath
https://github.com/spyzhov/ajson
https://github.com/vmware-labs/yaml-jsonpath
https://github.com/akshaymankar/jsonpath-hs
https://code.google.com/archive/p/jsonpath/
https://github.com/brunerd/jsonpath
https://github.com/dchester/jsonpath
https://github.com/s3u/JSONPath
https://github.com/jsurfer/JsonSurfer
https://github.com/json-path/JsonPath/
https://github.com/codeniko/JsonPathKt
https://github.com/javerous/SMJJSONPath
https://code.google.com/archive/p/jsonpath/
https://github.com/Galbar/JsonPath-PHP
https://github.com/remorhaz/php-json-path/
https://github.com/SoftCreatR/JSONPath
https://metacpan.org/pod/JSON::Path
http://www.ultimate.com/phil/python/#jsonpath
https://github.com/h2non/jsonpath-ng
https://github.com/kennknowles/python-jsonpath-rw
https://github.com/pacifica/python-jsonpath2
https://github.com/jnthn/json-path
https://github.com/joshbuddy/jsonpath
https://github.com/greyblake/jsonpath-rs
https://github.com/freestrings/jsonpath
https://github.com/CraftSpider/jsonpath-plus
https://github.com/gatling/jsonpath
https://github.com/KittyMac/Sextant
https://www.newtonsoft.com/json
https://github.com/danielaparker/JsonCons.Net
https://github.com/gregsdennis/json-everything
https://github.com/atifaziz/JSONPath
https://github.com/gregsdennis/Manatee.Json

Bibliography

[Baw99] Alan Bawden. ‘Quasiquotation in Lisp’. In: PEPM. 1999.

[BMP21] Corentin Barloy, Filip Murlak and Charles Paperman. ‘Stackless Processing of
Streamed Trees’. In: Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Sym-
posium on Principles of Database Systems. PODS’21. Virtual Event, China: Asso-
ciation for Computing Machinery, 2021, pp. 109–125. isbn: 9781450383813. doi:
10.1145/3452021.3458320. url: https://doi.org/10.1145/3452021.3458320.

[Bol+06] Raphaël Bolze et al. ‘Grid’5000: A Large Scale And Highly Reconfigurable Exper-
imental Grid Testbed’. In: International Journal of High Performance Computing
Applications 20.4 (2006), pp. 481–494. doi: 10.1177/1094342006070078. url:
https://hal.inria.fr/hal-00684943.

[Bra17] Tim Bray. The JavaScript Object Notation (JSON) Data Interchange Format.
Tech. rep. 8259. Dec. 2017. 16 pp. doi: 10.17487/RFC8259. url: https://www.
rfc-editor.org/info/rfc8259.

[Bur+19] Christoph Burgmer et al. json-path-comparison. 2019. url: https://github.com/
cburgmer/json-path-comparison/commit/c0a5122a7c6ae8923550e7208d6443be79bc94d0
(visited on 01/05/2022).

[CD99] James Clark and Steven DeRose. XML Path Language (XPath) Version 1.0. Re-
commendation. https://www.w3.org/TR/1999/REC-xpath-19991116/. Latest
version available at https://www.w3.org/TR/xpath/. W3C, Nov. 1999.

[Gal15] Andrew Gallant. memchr. 2015. url: https://crates.io/crates/memchr.

[Gie22a] Mateusz Gienieczko. aligners crate. 2022. url: https://crates.io/crates/
aligners.

[Gie22b] Mateusz Gienieczko. rsonpath. 2022. url: https://github.com/V0ldek/rsonpath.

[GNB22] Stefan Gössner, Glyn Normington and Carsten Bormann. JSONPath: Query ex-
pressions for JSON. Internet-Draft draft-ietf-jsonpath-base-05. Work in Progress.
Internet Engineering Task Force, Apr. 2022. 45 pp. url: https://datatracker.
ietf.org/doc/html/draft-ietf-jsonpath-base-05.

[Gös07] Stefan Gössner. JsonPath. 2007. url: https://goessner.net/articles/JsonPath/
(visited on 01/05/2022).

[Gro18] Groupement d’Intérêt Scientifique. Grid’5000 hardware. 2018. url: https://www.
grid5000.fr/w/Hardware (visited on 30/06/2022).

[GV04] Pierre Genevès and Jean-Yves Vion-Dury. ‘XPath Formal Semantics and Beyond:
a Coq based approach’. In: (Aug. 2004).

[Hei17] Brook Heisler. criterion-rs. 2017. url: https://crates.io/crates/criterion-
rs.

67

https://doi.org/10.1145/3452021.3458320
https://doi.org/10.1145/3452021.3458320
https://doi.org/10.1177/1094342006070078
https://hal.inria.fr/hal-00684943
https://doi.org/10.17487/RFC8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://github.com/cburgmer/json-path-comparison/commit/c0a5122a7c6ae8923550e7208d6443be79bc94d0
https://github.com/cburgmer/json-path-comparison/commit/c0a5122a7c6ae8923550e7208d6443be79bc94d0
https://www.w3.org/TR/1999/REC-xpath-19991116/
https://www.w3.org/TR/xpath/
https://crates.io/crates/memchr
https://crates.io/crates/aligners
https://crates.io/crates/aligners
https://github.com/V0ldek/rsonpath
https://datatracker.ietf.org/doc/html/draft-ietf-jsonpath-base-05
https://datatracker.ietf.org/doc/html/draft-ietf-jsonpath-base-05
https://goessner.net/articles/JsonPath/
https://www.grid5000.fr/w/Hardware
https://www.grid5000.fr/w/Hardware
https://crates.io/crates/criterion-rs
https://crates.io/crates/criterion-rs

[Int22] Intel Corporation. Intel Intrinsics Guide. Version 3.6.2. 2022. url: https : / /
www.intel.com/content/www/us/en/docs/intrinsics- guide (visited on
29/05/2022).

[Lam75] Leslie Lamport. ‘Multiple Byte Processing with Full-Word Instructions’. In: Com-
munications of the ACM 18.8 (Aug. 1975), pp. 471–475. url: https://www.
microsoft.com/en-us/research/publication/multiple-byte-processing-
full-word-instructions/.

[LL19] Geoff Langdale and Daniel Lemire. ‘Parsing Gigabytes of JSON per Second’. In:
CoRR abs/1902.08318 (2019). arXiv: 1902.08318. url: http://arxiv.org/abs/
1902.08318.

[Mai07] Geoffrey Mainland. ‘Why It’s Nice to Be Quoted: Quasiquoting for Haskell’. In:
Proceedings of the ACM SIGPLAN Workshop on Haskell Workshop. Haskell ’07.
Freiburg, Germany: Association for Computing Machinery, 2007, pp. 73–82. isbn:
9781595936745. doi: 10.1145/1291201.1291211. url: https://doi.org/10.
1145/1291201.1291211.

[MC89] David A. Mix Barrington and James Corbett. ‘On the relative complexity of some
languages in NC1’. In: Information Processing Letters 32.5 (1989), pp. 251–256.
issn: 0020-0190. doi: https://doi.org/10.1016/0020-0190(89)90052-5. url:
https://www.sciencedirect.com/science/article/pii/0020019089900525.

[ML17] Wojciech Mula and Daniel Lemire. ‘Faster Base64 Encoding and Decoding Using
AVX2 Instructions’. In: CoRR abs/1704.00605 (2017). arXiv: 1704.00605. url:
http://arxiv.org/abs/1704.00605.

[MPP16] Filip Murlak, Charles Paperman and Michał Pilipczuk. ‘Schema Validation via
Streaming Circuits’. In: Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems. PODS ’16. San Francisco, Cali-
fornia, USA: Association for Computing Machinery, 2016, pp. 237–249. isbn:
9781450341912. doi: 10.1145/2902251.2902299. url: https://doi.org/10.
1145/2902251.2902299.

[Pal+18] Shoumik Palkar et al. ‘Filter Before You Parse: Faster Analytics on Raw Data
with Sparser’. In: Proc. VLDB Endow. 11 (2018), pp. 1576–1589.

[Pap21] Charles Paperman. jsonpath duplication result. PostgreSQL mailing list exchange.
2021. url: https://www.postgresql.org/message- id/YTDMTNTZcFACww2V%
40paperman.name.

[RDS17] Jonathan Robie, Michael Dyck and Josh Spiegel. XML Path Language (XPath) 3.1.
Recommendation. https://www.w3.org/TR/2017/REC-xpath-31-20170321/.
Latest version available at https://www.w3.org/TR/xpath-31/. W3C, Mar.
2017.

[Rus15] Rust Project. The Cargo Book – Build Scripts. Version 0.62.0. 2015. url: https:
//doc.rust-lang.org/cargo/reference/build-scripts.html#build-scripts
(visited on 11/06/2022).

[Rus19] Rust Project. Rust Language Documentation – pointer::align_offset. 2019.
url: https://doc.rust-lang.org/std/primitive.pointer.html#method.
align_offset (visited on 19/05/2022).

[Tol16] David Tolnay. quote crate. 2016. url: https://crates.io/crates/quote.

68

https://www.intel.com/content/www/us/en/docs/intrinsics-guide
https://www.intel.com/content/www/us/en/docs/intrinsics-guide
https://www.microsoft.com/en-us/research/publication/multiple-byte-processing-full-word-instructions/
https://www.microsoft.com/en-us/research/publication/multiple-byte-processing-full-word-instructions/
https://www.microsoft.com/en-us/research/publication/multiple-byte-processing-full-word-instructions/
https://arxiv.org/abs/1902.08318
http://arxiv.org/abs/1902.08318
http://arxiv.org/abs/1902.08318
https://doi.org/10.1145/1291201.1291211
https://doi.org/10.1145/1291201.1291211
https://doi.org/10.1145/1291201.1291211
https://doi.org/https://doi.org/10.1016/0020-0190(89)90052-5
https://www.sciencedirect.com/science/article/pii/0020019089900525
https://arxiv.org/abs/1704.00605
http://arxiv.org/abs/1704.00605
https://doi.org/10.1145/2902251.2902299
https://doi.org/10.1145/2902251.2902299
https://doi.org/10.1145/2902251.2902299
https://www.postgresql.org/message-id/YTDMTNTZcFACww2V%40paperman.name
https://www.postgresql.org/message-id/YTDMTNTZcFACww2V%40paperman.name
https://www.w3.org/TR/2017/REC-xpath-31-20170321/
https://www.w3.org/TR/xpath-31/
https://doc.rust-lang.org/cargo/reference/build-scripts.html#build-scripts
https://doc.rust-lang.org/cargo/reference/build-scripts.html#build-scripts
https://doc.rust-lang.org/std/primitive.pointer.html#method.align_offset
https://doc.rust-lang.org/std/primitive.pointer.html#method.align_offset
https://crates.io/crates/quote

[Tol17] David Tolnay. proc-macro2 crate. 2017. url: https://crates.io/crates/proc-
macro2.

[Wik22] Wikimedia Foundation. Wikidata Database. 2022. url: https://www.wikidata.
org/wiki/Wikidata:Database%5C_download%5C#JSON%5C_dumps%5C_(recommended).

[ZWR20] Wangda Zhang, Yanbin Wang and Kenneth Ross. ‘Parallel Prefix Sum with SIMD’.
In: ADMS@VLDB. 2020.

69

https://crates.io/crates/proc-macro2
https://crates.io/crates/proc-macro2
https://www.wikidata.org/wiki/Wikidata:Database%5C_download%5C#JSON%5C_dumps%5C_(recommended)
https://www.wikidata.org/wiki/Wikidata:Database%5C_download%5C#JSON%5C_dumps%5C_(recommended)

	Introduction
	JSON and JSONPath
	JSON documents as trees
	JSONPath queries as node or path selectors
	Node semantics
	Path semantics
	Semantics choice

	Syntax assumptions
	Unicode escapes in labels

	SIMD model
	Preliminaries
	SIMD extensions
	Basic SIMD operations

	Intrinsics
	x86
	Instruction sets
	Lanes
	CLMUL – carry-less multiplication
	Shuffle – nibble lookup tables

	Padding and alignment
	Padding
	Alignment

	Example vectorial algorithm – discrepancy search
	Performance

	Branchless streaming algorithms
	Find byte – memchr
	Performance

	Find sequence – memmem
	Code synthesis with Rust procedural macros
	Performance

	Vectorised depth calculation
	Eager implementation
	Lazy implementation
	Performance

	Vectorised classifier
	Structural lookup table
	Non-overlapping groups
	Few groups
	General case

	Handling escapes
	Block boundaries

	Recognising quoted sequences
	Block boundaries

	Structural iterator
	Performance

	Main query engine
	Stackless processing
	Query automata
	Descendant-only automaton
	Allowing child selectors

	Small stack model
	Full algorithm
	Automaton construction
	Execution

	Performance
	Analysis
	Existing implementations

	Benchmark methodology
	Datasets
	Machines
	Tooling
	Reproducibility

	Summary
	aligners crate
	Supported alignments
	Asserting alignment on a type level
	Comparison to existing solutions

	Circuit lower bound for Dyck
	Classes with a bounded number of special gates
	Dyck, Prefix-Dyck
	Neutral letters
	Open conjectures

	JSONPath implementations – node and path semantics
	Bibliography

